MHB View Attachment to Understanding Taxes

  • Thread starter Thread starter anil86
  • Start date Start date
  • Tags Tags
    Taxes
anil86
Messages
10
Reaction score
0
Please view attachment!
 

Attachments

  • Image0349.jpg
    Image0349.jpg
    87.8 KB · Views: 132
Mathematics news on Phys.org
anil86 said:
Please view attachment!

Wellcome on MHB anil86!... You can start from the binomial sum...

$\displaystyle \frac{1}{\sqrt{1 - x^{2}}} = 1 + \frac{1}{2}\ x^{2} + \frac{3}{8}\ x^{4} + ...\ (1)$

... and from (1) ...

$\displaystyle \frac{x}{\sqrt{1 - x^{2}}} = x + \frac{1}{2}\ x^{3} + \frac{3}{8}\ x^{5} + ... \ (2)$

... so that the sum of Your series is... $\displaystyle S = \text{Im} \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\}\ (3)$

Are You able to proceed?...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Wellcome on MHB anil86!... You can start from the binomial sum...

$\displaystyle \frac{1}{\sqrt{1 - x^{2}}} = 1 + \frac{1}{2}\ x^{2} + \frac{3}{8}\ x^{4} + ...\ (1)$

... and from (1) ...

$\displaystyle \frac{x}{\sqrt{1 - x^{2}}} = x + \frac{1}{2}\ x^{3} + \frac{3}{8}\ x^{5} + ... \ (2)$

... so that the sum of Your series is... $\displaystyle S = \text{Im} \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\}\ (3)$

Are You able to proceed?...

Kind regards

$\chi$ $\sigma$

Please view attachment!View attachment 1687
 

Attachments

  • Image0352.jpg
    Image0352.jpg
    111.3 KB · Views: 101
chisigma said:
Wellcome on MHB anil86!... You can start from the binomial sum...

$\displaystyle \frac{1}{\sqrt{1 - x^{2}}} = 1 + \frac{1}{2}\ x^{2} + \frac{3}{8}\ x^{4} + ...\ (1)$

... and from (1) ...

$\displaystyle \frac{x}{\sqrt{1 - x^{2}}} = x + \frac{1}{2}\ x^{3} + \frac{3}{8}\ x^{5} + ... \ (2)$

... so that the sum of Your series is... $\displaystyle S = \text{Im} \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\}\ (3)$

Is...

$\displaystyle 1 - e^{2\ z} = - e^{z}\ (e^{z} - e^{- z}) -> \sqrt{1 - e^{2\ z}} = i\ e^{\frac{z}{2}}\ \sqrt {e^{z} - e^{- z}}\ (1)$

... so that for $\displaystyle z = i\ \theta $ is...

$\displaystyle \text{Im}\ \{\frac{e^{i\ \theta}}{\sqrt{1 - e^{2\ i\ \theta}}}\} = \text{Im}\ \{ \frac{e^{i\ \frac{\theta}{2}}}{i\ \sqrt{e^{i\ \theta} + e^{- i\ \theta}}} \} = \frac{\sin \frac{\theta}{2} + \cos {\frac{\theta}{2}}}{2\ \sqrt{\sin \theta}}\ (2)$

Kind regards

$\chi$ $\sigma$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top