Hmm they've used cylindrical co-ordinates, which is basically polar co-ordinates for the 'base' and cartesian for the z-axis, usually given as (ρ,θ,z), where ρ is the radius and (ρ,θ) are confined to what would be the x-y plane. For example (1,π/4,1) has cartesian co-ordinates of (1/√2, 1/√2, 1)
It's multiplied by 16 because it's easier to break it into 16 sections, work out the volume of just one of the sections, then multiply to get the full volume again. If you look at this image, you can see how the cylinders cross each other. Draw a circle onto the centre of that shape, to represent the other central cylinder, and you'll see it forms 8 similar segments. So if you keep in mind that the shape has a bottom half to it as well, that makes a total of 16 segments.
Looks like the first integral, from 0 to root(1-r
2cos
2theta, defines the height of the thing from 0 to its maximum point, for all points. I don't know how they came up with this, but it's presumably taken from something very similar to the spherical co-ordinate properties you gave me before, where you said:
x = rsin(\theta)cos(\phi)
y = rsin(\theta)sin(\phi)
z = rcos(\theta)
You can find out more here -
http://en.wikipedia.org/wiki/Cylindrical_coordinate_system
So there'll be something that defines the maximum height of the volume for any point. In the case of this question, it happens to be that the volume can never exceed a height of root(1-r
2cos
2theta), which I guess makes sense if you try to picture it.
And then the other integral values are the nice polar versions, which just go from 0 to r, and 0 to Pi/4, where the Pi/4 represents the fact that you're dealing with just that 1/8th of the top half of the volume.
That's about it really. The integral certainly does give a value of 8(2-root2), which is damn close to that of a unit circle, which makes sense because of the limits set out in the question, and so I'm now willing to concede that that surely is the right answer and everything I said before was totally wrong, hah.