Calculating Volume of Revolution: Bounded Figure Rotated about y = -1

  • Thread starter Thread starter ChaoticLlama
  • Start date Start date
  • Tags Tags
    Revolution Volumes
ChaoticLlama
Messages
58
Reaction score
0
What is the volume of the figure bounded by y = 2x - x^2, y = 2x, x = 2, and rotated about the line y = -1.

Is this the correct integral?

\[<br /> V = \pi \int_0^2 {((2x + 1)^2 - (2x - x^2 + 1)^2 } )dx<br /> \]<br />

Thank you for your time.
 
Physics news on Phys.org
Yes, your answer is correct.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top