Want a book/notes that cover this syllabus (dynamical systems).

AI Thread Summary
The discussion centers on finding a self-contained book suitable for self-study in mathematical physics, specifically focusing on Lagrangian and Hamiltonian mechanics, non-linearity in equations of motion, chaos theory, and related concepts. Key topics include deriving Lagrangians and Hamiltonians, understanding conservation laws, stability analysis, and bifurcation theory for both continuous and discrete dynamical systems. Participants suggest several titles that align with these objectives, emphasizing the need for resources that do not require extensive prior knowledge in differential geometry or topology. Recommendations include Guckenheimer's work, "Classical Dynamics: A Contemporary Approach" by Jose and Saletan, and Scheck's "Mechanics: From Newton's Laws to Deterministic Chaos," which are noted for their comprehensive coverage of the discussed topics. Additionally, Arnol'd's "Catastrophe Theory" is mentioned as a resource for further exploration of the subject matter.
Lavabug
Messages
858
Reaction score
37
I am looking for a book that covers these topics at a self-contained level for self-study (ie: a book designed for a short course on the subject or lecture notes):
-Develop Lagrangian and Hamiltonian mechanics for single particles and for fields;

-Understand the role of non-linearity in discrete and continuous equations of motion,
particularly through the development of phase space portraits, local stability analysis and
bifurcation diagrams;

-Show how non-linear classical mechanics can give rise to chaotic motion, and to describe the character of chaos; develop ideas of scale-invariance and fractal geometry.

Objectives

For Continuous Dynamical Systems, students should be able to:
-Derive the Lagrangian and Hamiltonian using generalised coordinates and momenta for simple mechanical systems;
-Derive the equations of energy, momentum and angular momentum conservation from symmetries of the Hamiltonian;
-Derive and manipulate Hamiltonians and Lagrangians for classical field theories, including electromagnetism;
-Derive and give a physical interpretation of Liouville‟s theorem in n dimensions;

-Determine the local and global stability of the equilibrium of a linear system;
-Find the equilibria and determine their local stability for one- and two-dimensional nonlinear systems;
-Give a qualitative analysis of the global phase portrait for simple one- and two-
dimensional systems;

-Give examples of the saddle-node, transcritical, pitchfork and Hopf bifurcations;
-Determine the type of bifurcation in one-dimensional real and complex systems;

For Discrete Dynamical Systems, students should be able to:
-Find equilibria and cycles for simple systems, and determine their stability;
-Describe period-doubling bifurcations for a general discrete system;
-Calculate the Lyapunov exponent of a given trajectory and interpret the result for
attracting and repelling trajectories;

-Give a qualitative description of the origin of chaotic behaviour in discrete systems;
-Understand the concept and define various properties of fractals

Things in bold are of most interest to me. I notice there are a lot of pure math books on this subject but I'm looking for something more tailored for a "mathematical physics" course and less encyclopedic, that doesn't require much background in differential geometry or topology (just had a course in GR that teaches the basics). Anything like this out there?
 
Physics news on Phys.org
Would you say it is self-contained? Ie: Won't require learning the necessary differential geometry elsewhere?

They have this at my library but it's currently borrowed. This one caught my eye for the time being:

https://www.amazon.com/gp/product/0738204536/?tag=pfamazon01-20

how does it compare to Guckenheimer's?
 
Last edited by a moderator:
Classical Dynamics: A Contemporary Approach by Jose and Saletan or Scheck's Mechanics: From Newton's Laws to Deterministic Chaos should cover most of your list. Arnol'd's Catastrophe Theory should cover the rest.
 
The book is fascinating. If your education includes a typical math degree curriculum, with Lebesgue integration, functional analysis, etc, it teaches QFT with only a passing acquaintance of ordinary QM you would get at HS. However, I would read Lenny Susskind's book on QM first. Purchased a copy straight away, but it will not arrive until the end of December; however, Scribd has a PDF I am now studying. The first part introduces distribution theory (and other related concepts), which...
I've gone through the Standard turbulence textbooks such as Pope's Turbulent Flows and Wilcox' Turbulent modelling for CFD which mostly Covers RANS and the closure models. I want to jump more into DNS but most of the work i've been able to come across is too "practical" and not much explanation of the theory behind it. I wonder if there is a book that takes a theoretical approach to Turbulence starting from the full Navier Stokes Equations and developing from there, instead of jumping from...

Similar threads

Replies
4
Views
2K
Replies
7
Views
15K
Replies
20
Views
17K
Replies
16
Views
10K
Replies
163
Views
26K
Replies
6
Views
8K
Back
Top