piano.lisa said:
This was my method:
k^2 = \frac{\omega^2}{v^2} = \frac{(\alpha + i\beta)^2}{(u - \beta +i\alpha)^2}
Then, I expand the brackets, and rationalize the denominator.
k^2 = \frac{(\alpha^2 - \beta^2 + 2i\alpha\beta)[(u^2 + \beta^2 - \alpha^2 - 2u\beta) - i(2u\alpha - 2\beta\alpha)]}{[(u^2 + \beta^2 - \alpha^2 - 2u\beta) + i(2u\alpha - 2\beta\alpha)][(u^2 + \beta^2 - \alpha^2 - 2u\beta) - i(2u\alpha - 2\beta\alpha)]}
k^2 = \frac{(\alpha^2 - \beta^2 + 2i\alpha\beta)(u^2 + \beta^2 - \alpha^2 - 2u\beta) - i(\alpha^2 - \beta^2 + 2i\alpha\beta)(2u\alpha - 2\beta\alpha)}{(u^2 + \beta^2 - \alpha^2 - 2u\beta)^2 + (2u\alpha + 2\beta\alpha)^2}
From there, I have
k^2 = \frac{REAL + i(2\alpha\beta u^2 - 2\alpha\beta^2 u - 2\alpha^3 u)}{denominator}
I then set Im(k^2) = 0 and obtained the solutions I stated previously for \alpha and \beta
2\alpha\beta u^2 - 2u\alpha\beta^2 - 2\alpha^3 u = 0
\alpha^2 - \beta u + \beta^2 = 0
\beta = \frac{u \pm \sqrt{u^2 - 4\alpha^2}}{2}
Then, I substitute \alpha = \omega - i\beta to obtain \beta(-4u - 8i\omega) + 4\omega^2 = 0
This gives:
\beta = \frac{\omega^2}{u + 2i\omega} and \alpha = \frac{\omega (u + i\omega)}{u + 2i\omega}
You're right though... my answer would be the same as doing k=w/v... So what is the problem with my method?
If I do k^2 = \frac{\omega\omega *}{vv*}, I end up with a real value for k, obviously... But I cannot solve for \alpha and \beta in terms of u and \omega.
Thank you.
Perhaps I am misunderstanding, but this
piano.lisa said:
k^2 = \omega^2 / v^2 = \frac{(\alpha + i\beta)^2}{(u + i\omega)^2}
= \frac{(\alpha^2 - \beta^2 + 2i\alpha \beta)(u^2 - \omega^2 - 2iu\omega)}{(u^2 - \omega^2 + 2iu\omega)(u^2 - \omega^2 - 2iu\omega)}
k^2 = \frac{(u^2 - \omega^2)(\alpha^2 - \beta^2) + 4\alpha\beta u\omega}{(u^2 + \omega^2)^2} + i\frac{(u^2 - \omega^2)(2\alpha\beta) - (2u\omega)(\alpha^2 - \beta^2)}{(u^2 + \omega^2)^2}
looks very different to me than what you get from expanding
k^2 = \frac{\omega^2}{v^2} = \frac{(\alpha + i\beta)^2}{(u - \beta +i\alpha)^2}
When I did it, every term that involved an αβ product canceled out. I hope I did not make an algebra mistake. Here is what I have. Check it over.
\omega = \alpha + i\beta
v = u + i\omega = u + i\left( {\alpha + i\beta } \right) = u - \beta + i\alpha
k^2 = \frac{{\omega ^2 }}{{v^2 }} = \frac{{\alpha ^2 - \beta ^2 + 2i\alpha \beta }}{{u^2 - 2u\beta + \beta ^2 + 2i\alpha \left( {u - \beta } \right) - \alpha ^2 }}
k^2 = \frac{{\left( {\alpha ^2 - \beta ^2 + 2i\alpha \beta } \right)\left( {u^2 - 2u\beta + \beta ^2 - \alpha ^2 - 2i\alpha \left( {u - \beta } \right)} \right)}}{{\left| {u^2 - 2u\beta + \beta ^2 - \alpha ^2 + 2i\alpha \left( {u - \beta } \right)} \right|^2 }}
I am \left( k^2 \right) = 0 = \frac{{2i\alpha \beta \left( {u^2 - 2u\beta + \beta ^2 - \alpha ^2 } \right) - 2i\alpha \left( {u - \beta } \right)\left( {\alpha ^2 - \beta ^2 } \right)}}{{\left| {u^2 + \beta ^2 - 2u\beta - \alpha ^2 + 2i\alpha \left( {u - \beta } \right)} \right|^2 }}
0 = \beta \left( {u^2 - 2u\beta + \beta ^2 - \alpha ^2 } \right) - \left( {u - \beta } \right)\left( {\alpha ^2 - \beta ^2 } \right)
0 = \beta u^2 - 2u\beta ^2 + \beta ^3 - \beta \alpha ^2 - u\alpha ^2 + u\beta ^2 + \beta \alpha ^2 - \beta ^3
0 = \beta u^2 - u\beta ^2 - u\alpha ^2
\beta u = \alpha ^2 + \beta ^2 = \omega \omega ^*
\beta = \frac{{\omega \omega ^* }}{u}
\alpha ^2 = \omega \omega ^* - \beta ^2 = \omega \omega * - \left( {\frac{{\omega \omega ^* }}{u}} \right)^2 = \omega \omega *\left( {1 - \frac{{\omega \omega ^* }}{{u^2 }}} \right)
\alpha = \sqrt {\omega \omega ^* \left( {1 - \frac{{\omega \omega ^* }}{{u^2 }}} \right)}