Wave equation for Schwarzschild metric

Arman777
Insights Author
Gold Member
Messages
2,163
Reaction score
191
Homework Statement
Wave equation for Schwarzschild metric
Relevant Equations
GR equations
I am trying to find the $$\nabla_{\mu}\nabla^{\mu} \Phi$$ for $$ds^2 = (1 - \frac{2M}{r})dt^2 + (1 - \frac{2M}{r})^{-1}dr^2 + r^2d\Omega^2$$

I have did some calculations by using

$$\nabla_{\mu}\nabla^{\mu}\Phi = \frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}g^{\mu \nu}\partial_{\nu}\Phi)$$

and I have found

$$\nabla_{\mu}\nabla^{\mu} \Phi = [g^{tt}\partial^2_t + 2(\frac{1}{r} - \frac{M}{r^2})\partial_r + g^{rr}\partial^2_r + \frac{cot(\theta)}{r^2}\partial_{\theta} + g^{\theta \theta}\partial^2_{\theta} + g^{\phi \phi}\partial^2_{\phi}]\Phi$$

but I am not sure that is this true or it can be further simplified ? Any ideas
 
Physics news on Phys.org
Hello, @Arman777 . I am recently studying this problem. I would suggest Spacetime and geometry by Sean M. Carroll, especialy in pages 395 to 400.

Will I violate any rules in this forum if I just suggest a book?
 
  • Like
Likes PeroK and vanhees71
Of course not. Of course you violate rules, if you link to some illegal download-link to a copyrighted book.
 
vanhees71 said:
Of course not. Of course you violate rules, if you link to some illegal download-link to a copyrighted book.
Thanks! Sometimes I hesitate to answer in homework forum, because not only there are too many professors, but I am afraid I would give the answer directly which would violate the rules.
 
  • Like
Likes vanhees71 and PeroK
Don't worry about the "professors". They are also just human beings. Not giving directly the answer is also my problem with the homework forums, but it's of course much better to give only hints first and let the student find the solution him or herself.
 
  • Like
Likes JD_PM and Haorong Wu
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top