- #1

Watts

- 38

- 0

I am trying to find a closed solution to the three dimensional acoustical wave equation in rectangle coordinates [itex] \[

\frac{{\partial ^2 p}}{{\partial x^2 }} + \frac{{\partial ^2 p}}{{\partial y^2 }} + \frac{{\partial ^2 p}}{{\partial z^2 }} = \frac{1}{{c^2 }} \cdot \frac{{\partial ^2 p}}{{\partial t^2 }}

\]

[/itex]. The wave is propagating along the x axis. I have a generic solution but I don’t have a closed solution subject to the required boundary conditions I need. I am assuming the wave begins propagation at the origin and travels to the end point of L and the amplitude is restricted to the width and height of A and B. I am assuming it is propagating in a rectangular tube. The variable p is the acoustic pressure and c is the velocity of the wave. If anybody could help I would appreciate it.

\frac{{\partial ^2 p}}{{\partial x^2 }} + \frac{{\partial ^2 p}}{{\partial y^2 }} + \frac{{\partial ^2 p}}{{\partial z^2 }} = \frac{1}{{c^2 }} \cdot \frac{{\partial ^2 p}}{{\partial t^2 }}

\]

[/itex]. The wave is propagating along the x axis. I have a generic solution but I don’t have a closed solution subject to the required boundary conditions I need. I am assuming the wave begins propagation at the origin and travels to the end point of L and the amplitude is restricted to the width and height of A and B. I am assuming it is propagating in a rectangular tube. The variable p is the acoustic pressure and c is the velocity of the wave. If anybody could help I would appreciate it.

#### Attachments

Last edited: