Wave speed of a stretched string

AI Thread Summary
Wave speed in a stretched string is primarily determined by the medium's properties, specifically its tension and mass density. The equations v = λƒ and v = √(τ/μ) highlight that while wave speed is constant for a given medium, wavelength and frequency can vary independently. The frequency is influenced by the source generating the wave, such as the rate of motion applied to the string. Although the medium dictates the speed, different combinations of frequency and wavelength can still yield the same wave speed. Understanding these relationships is crucial for analyzing wave behavior in various media.
duran9987
Messages
12
Reaction score
2
A bit confused here as to what wave speed is dependent on. At first I learned that v = λƒ, and a couple of pages later in my textbook I find that v = √(τ/μ). Also, I found that speed is only dependent on the properties of the medium, specifically its elasticity and mass. Where does wavelength and frequency come into play if the medium is the only dependent?
 
Physics news on Phys.org
The frequency of the wave depends on the source of the wave (how it is being generated). If you consider a wave on a rope, how frequently you wave your arm up and down will determine the frequency of the wave.
The speed of the wave depends on the tension in and density of the rope. So the medium determines the speed of the wave, but there are infinite combinations of frequency and wavelength that will give the correct speed.
For a given rope under a given tension, the wave will travel at a certain speed and the wavelength will depend on the frequency according to \lambda=\frac{v}{ƒ}.
 
  • Like
Likes duran9987
The medium plays a very big role in wave speed. If the waves travel along a string, the lower the mass and greater the density of the string, the faster waves travel across the string. Waves also travel much more slowly in the air than they do underwater or along a dense string. I'm sure the source of the wave plays a role in its speed as well, but I'm not sure how. This source has some information on it: http://dev.physicslab.org/Document.aspx?doctype=3&filename=WavesSound_WavesAlongStrings.xml
 
  • Like
Likes duran9987
Zachary Samples said:
The medium plays a very big role in wave speed. If the waves travel along a string, the lower the mass and greater the density of the string, the faster waves travel across the string. Waves also travel much more slowly in the air than they do underwater or along a dense string. I'm sure the source of the wave plays a role in its speed as well, but I'm not sure how. This source has some information on it: http://dev.physicslab.org/Document.aspx?doctype=3&filename=WavesSound_WavesAlongStrings.xml
The source does not play any role in wave speed other than through the fact that some media have dispersion relations such that the wave velocity is frequency dependent. The relation v = λf can rather be thought of as relating the frequency and wave length for a given wave velocity, i.e., for a wave with wave velocity v, a wave of frequency f will have wave length λ = v/f. Of course, if you measure the wave length and frequency, you can infer what the velocity is (and thus obtain information on the internal properties of the medium).
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top