Weakly interacting Bosons in a 3D harmonic oscillator

rmiller70015
Messages
110
Reaction score
1
Homework Statement
N identical, weakly interacting bosons are trapped in a 3-dimensional harmonic oscillator. Use the Gross-Pitaevskii equation and N = large to find the chemical potential as a function of the number of bosons.
Relevant Equations
##V(r) = \frac{1}{2}m\omega ^2 r^2##
GP: ##[-\frac{\bar{h}^2 \nabla ^2}{2m} - \mu + V(r) + U|\Psi (r)|^2]\Psi (r) = 0###
1. Since N is large, ignore the kinetic energy term.
##[-\mu + V(r) + U|\Psi (r)|^2]\Psi (r) = 0##

2. Solve for the density ##|\Psi (r)|^2##
##|\Psi (r)|^2 = \frac{\mu - V(r)}{U}##

3. Integrate density times volume to get number of bosons
##\int|\Psi (r)|^2 d\tau = \int \frac{\mu - V(r)}{U}d\tau###
## = \frac{4\pi}{U} \int_0^r \mu \rho ^2 - \frac{1}{2}m\omega ^2 \rho ^4 d\rho## where ##\rho## is a dummy variable for integration
## N = \frac{4\pi}{U}( \frac{1}{3}\mu r^3 - \frac{1}{10}V(r)r^3 )##4. Solve for ##\mu##
##\mu = \frac{3NU}{4\pi r^3} - \frac{3}{10}V(r)##

The problem is that my professor said that chemical potential should go like ##N^\frac{2}{5}## or something like that. So I am concerned that I didn't do something correctly. She also recalls things from memory incorrectly a lot of the time so I may actually be correct. I would just like a second opinion.
 
Last edited:
Physics news on Phys.org
rmiller70015 said:
The problem is that my professor said that chemical potential should go like ##N^{\frac{2}{5}}## or something like that.
It does.

Notice that your chemical potential is a function of r. You're missing a step. Think about the limits of integration in the normalization condition. Where should you stop integrating the density?
 
Twigg said:
It does.

Notice that your chemical potential is a function of r. You're missing a step. Think about the limits of integration in the normalization condition. Where should you stop integrating the density?
I found a paper that does this in 1-dimensions and I can kind of expand that to 3-dimensions, but they integrate between ##\pm \sqrt{\mu}##. Is this because at ##\sqrt{\mu}## you have a density that drops below the level where you can still be in the Thomas-Fermi regime and the kinetic energy term is no longer negligible?
 
rmiller70015 said:
Is this because at you have a density that drops below the level where you can still be in the Thomas-Fermi regime and the kinetic energy term is no longer negligible?
You're on the right track, but no.

The density you got was $$n(r) = \frac{\mu - V(r)}{U} = \frac{\mu}{U} - \left( \frac{\frac{1}{2}m\omega^2}{U} \right) r^2 $$ Try plotting this density vs r for ##\frac{\mu}{U} = 1## and ##\left( \frac{\frac{1}{2}m\omega^2}{U} \right) = 2## (I made up random numbers, but you'll see what I mean pretty quickly.) Notice anything funky?
 
I think the OP is gone, but here's the solution for anyone browsing this thread.

If you look at the density obtained from the Thomas-Fermi approximation, it eventually goes negative when ##V(r) > \mu##. The missing step was to set the density to 0 for all ##r > R## wgere ##R## is the radius of the atom cloud obtained by solving ##V(R) = \mu##.

In reality, these corners are smoothed out by the kinetic energy Hamiltonian as the density approaches 0, so there are no cusps. But for high average density, these corners are small in extent.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top