matematikuvol
- 190
- 0
Gap exponents are denoted like critical exponents for higher derivatives of Gibbs potential.
\Delta_l'
(\frac{\partial G}{\partial H})_T=G^{(1)}\propto (1-\frac{T}{T_c})^{-\Delta_1'}G^{0}
(\frac{\partial^l G}{\partial H^l})_T=G^{(1)}\propto (1-\frac{T}{T_c})^{-\Delta_l'}G^{l-1}
\alpha' is critical exponent for heat capacity. People used that
G^{0}\propto (1-\frac{T}{T_c})^{2-\alpha'}
How to get that? Why gap exponents are important?
\Delta_l'
(\frac{\partial G}{\partial H})_T=G^{(1)}\propto (1-\frac{T}{T_c})^{-\Delta_1'}G^{0}
(\frac{\partial^l G}{\partial H^l})_T=G^{(1)}\propto (1-\frac{T}{T_c})^{-\Delta_l'}G^{l-1}
\alpha' is critical exponent for heat capacity. People used that
G^{0}\propto (1-\frac{T}{T_c})^{2-\alpha'}
How to get that? Why gap exponents are important?