Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

What are some advanced physics of formula one?

  1. Nov 4, 2007 #1
    what are some"advanced" physics of formula one?

    I have a 15 minute presentation regarding the physics of formula one race cars. My teacher told me not to include any of the physics we've covered in class(grade 11). stuff we've talked about are velocity, acceleration, newton's law, g force, waves..etc basic stuff.

    During my research, I've found information on the aerodynamics of the F1 cars, such as downforce and bernoulli's principle. I'm having tough time trying to find "advanced" physics of F1. Could you guys assist me in this and point out some really important physics of f1?
  2. jcsd
  3. Nov 4, 2007 #2

    Claude Bile

    User Avatar
    Science Advisor

    Here are some things you could discuss;
    - Power to weight ratio and why engineers endeavour to maximise it.
    - Gear ratios etc.
    - Transfer of power from the engine to the ground, and what measures engineers take to prevent the tyres from slipping and skidding.
    - The tyres themselves and how they are designed to maximise "hold" onto the road surface.

    Good luck.

  4. Nov 4, 2007 #3


    User Avatar
    Homework Helper
    Gold Member

    Since you are talking about race cars, you may want to consider talking about why you are able to drive faster around a banked curve without flying off the curve than a flat curve.

    Of course, this is assuming you didn't cover that in class already. Anyway, Good luck with your presentation!
    Last edited: Nov 4, 2007
  5. Nov 4, 2007 #4
    you could get great milage out of friction
    tyre technology to make the tyres "sticky" to the track

    the braking systme and material, again looking for hi-friction to slow you down quick

    the aerodynamic downforce to "push" the car into the track, increase frictiona thus corner faster, at the same time having low drag to allow higher accel and speed,
    you could discuss how drag varies with velocity and maybe how you acceleration is affected by downforce.

    theres plenty of sensors on f1 cars aswell to provide telemetry to the pit crew, you could pick a few sensors (g force sensors) and discuss how they work?

    i'm sure you've thought of most of this already

    as far as "advanced physics" ?
    well, its all really basic principles, tuned.
    you could spend ages on an indepth look into the aerodynamics but the governing principles are still pretty simple.

    you could also look at some of the composite materials they use. and why for eg they choose carbon fibre suspension elements over steel?
  6. Nov 4, 2007 #5


    User Avatar
    Homework Helper

    Personally, I avoid using Bernoulli to describe lift or downforce. It's complicated when it's not a closed system and there is turbulence as in the real world. Newton always applies though. The amount of force perpendicular to the direction of travel (lift or downforce) will be equal to the net sum of all the affected molecules of air times their individual rates of accleration as an object travels through the air. Unlike an aircraft, F1 cars have a lot of drag, not much better than their lift. For 2005 and earlier, when they ran 3 liter V10 engines at 900+ hp, top speed was limited between 185mph to 235 mph based on wing settings. If you look at a video of a F1 race car in the rain, you see a huge rooster tail caused by the upwards acceleration of air by the wings on the car.

    In F1, underbody tunneling is not allowed (it is allowed in the USA similar Indy Race League and Champ Car racing series). Instead a flat skid board that wears based on contact is used to check for a F1 car being set too low.

    F1 uses a racing oriented traction control system (except for the initial launch and when exiting pits). Rather than eliminate tire spin completely, some tire spin is allowed, usually around 8% or so. The rules in F1 require that this be handed by the ECU engine management, and not by individual wheel braking (wheel braking is referred to as stability control in the racing world). The F1 ECU's cut off fuel to cylinders in a pattern, depending on how much power is to be reduced, although power cut of is limited so a driver can't just peg the throttle, but the driver is able to push the throttle such that the traction control is enable, which mostly helps at low speeds.

    For safety reasons, F1 and other high downforce racing cars are setup so that at high speeds, the downforce creates more relative rear end grip than front end grip, creating a slight understeer response. This is to prevent snap oversteer (cars spinning) at high speeds. At low speeds, the cars typically are setup with a bit of oversteer since it's quicker, and at low speeds there's less danger, and traction control will help reduce excessive throttle induced oversteer.

    F1 cars do not have a full frame. The monoque carbon fiber body itself is the main frame, and there is a driver cage, front sub-frame, and rear sub-frame on the car. Heat sheilding is used at the rear to prevent the carbon fiber from getting overheated by the engine and turbocharger.

    Back to the downforce, the amount of downforce and drag versus speed is adjusted based on the requirments of a particular track. On average there's 1 g of downforce at around 115mph. With a high downforce setting top speed on a straight can be reduced from potential 235mph down to about 185mph. In high speed turns, about 4 g's of lateral force can be generated, but this consumes enough energy, that top speed is futher reduced to about 160mph or so with the high downforce setting. If I remember correctly, the cars produce about 1g of drag around 155mph, which translates into 5g's or more of braking (1g aerodynamic, 4g's from the tires) at speeds at or above 155mph.

    The tires produce about 1.5g's of force in a non-downforce situation. The increase in grip versus downforce isn't linear though it takes more than (4 / 1.5) 2.6g's of downforce to increase grip enough to pull 4 gs in a turn.

    I'm not sure about F1 cars, but the heavier Champ Cars use 14 layers of carbon fiber cloth (and a lot of resin) to produce the monoque body. A team sprays a mold with mold release, then places the 14 layers and resin into the mold, then places the entire structure in a non-stick pink plastic bag, which is then put in a heated chamber and the bag is evacuated to force the carbon fiber cloth tightly into the mold. F1 cars may use few layers or lighter cloth than Champ Cars as F1 cars are about 200lbs lighter (around 1200 lbs versus 1500lbs). There are two main body pieces, the top and the bottom part.

    There's a DVD named "Super Speedway" about Champ Cars predecessor, called CART, that includes a video of the process in creating a Champ Car body.
    Last edited: Nov 5, 2007
  7. Nov 5, 2007 #6


    User Avatar

    I understand that at some speed, an F1 car could drive upside down. Prove at what speed this happens. The engines in an F1 car turn very fast, over 19,000 RPM's. Prove why this makes so much horsepower, even though they don't make much torque.
  8. Nov 5, 2007 #7
    You could derive the typical compression ratio of a F-1 car as compaerd to a regualr car. I think that would be sufficiently advanced enough for grade 11. You could also show the PV diagram of a internal combustion engine. This would be thermodynamics. Of course, Calculus would be handy for this. So depending on what you can do this might be an option.
    Last edited: Nov 5, 2007
  9. Nov 23, 2007 #8
    Ya wat u said is true.. F1 cars are designed in such a way that in order to avoid the ground effect it is provided with wings as in a airplane. since the cars normally reaches a top speed of 330km/hr, chances are there for a lift to be created. In order to avoid the car from lifting the driver will have to adjust the wingss so as to produce the down force. normally the cars are designed such that it can create a downforce of 6 times its own weight. it purely depends on the drivers skill. so as the car reaches the top speed of arnd 330 km/hr the driver adjusts the wings to produce this down force. tats y its practically possible to drive an F1 car upside down. n there s no fixed speed to drive the F1 car upside down....
  10. Nov 23, 2007 #9


    User Avatar

    I thouhgt they outlawed active aerodynamics in F1. You can make any changes you want, in the pits. No driver controlled surfaces. Did they change this rule?
  11. Nov 23, 2007 #10
  12. Nov 23, 2007 #11
    No insights from me...sorry; but I'd just like to thank bumfluff for that link.
  13. Nov 23, 2007 #12


    User Avatar

    the whole car body is a "wing" designed to produce a downforce that increases traction and keeps the car from slipping off the track when cornering around the loop. and i don't think that there is an adjustment of surfaces, it's just there (but the effect of it is certainly greater at high speeds than at low, but other than the gas pedal, i don't think there is any driver adjustment). besides superb engine, drive train, wheels and tires, that inverted aerodynamic design is the most interesting physical design aspect of F1 in my opinion.

    running with that website previously mentioned, i think this page is most interesting: http://www.f1technical.net/features/6757

    here's another link: http://www.f1-country.com/f1-engineer/aeorodynamics/aerodynamics.html [Broken]
    Last edited by a moderator: May 3, 2017
  14. Nov 23, 2007 #13


    User Avatar
    Homework Helper

    "f1technical" is a misleading name for that web-site. I didn't find any actual numbers anywhere. Wiki has better information. I've also included a link below to a web site listing actual downforce numbers for a 2001 Formula 1 car (it had the higher power 3 liter V10 engine, the newer cars, with 2.4 liter V8's, will have a bit less downforce).

    As previously posted, underbody tunneling is banned in F1, but allowed in Indy Racing Leage and Champ Cars (was also allowed in the former CART series). F1 cars are required to use a skid block or "plank" (mentioned in Wiki article).

    Link below to actual downforce numbers. The left side list the tracks, the car setups vary from track to track. Minimum weight of a 2001 car plus driver, oil, basically everything but fuel is 605kg. This is a French web site. In the table Cx = Cd (coefficient of drag), Eff = efficiently (overall lift to drag ratio), V = velocity, the speed at which all the other parameters were measured or calculated, A = aerodynamic downforce (in kg).


    Wiki link

    Last edited by a moderator: Apr 23, 2017
  15. Jul 22, 2008 #14


    User Avatar

    Re: what are some"advanced" physics of formula one?

    I am having a similar problem because i have the same topic for a 15 minute oral, i appreciate that you had the great idea to ask people for help on this topic.

    thanks for helping me out. :smile:
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook