MHB What are some intriguing integrals to explore?

  • Thread starter Thread starter polygamma
  • Start date Start date
  • Tags Tags
    Integrals
AI Thread Summary
The discussion presents several intriguing integrals for exploration, including integrals involving rational functions, the golden ratio, sine functions, and the error function. Notable solutions are provided for integrals such as \( \int_{0}^{\infty} \frac{x^{2}}{(1+x^{5})(1+x^{6})} \, dx \), which evaluates to \( \frac{\pi}{12} \), and \( \int_{0}^{\infty} \frac{1}{(1+x^{\varphi})^{\varphi}} \, dx \), which simplifies to 1. Participants share various methods for solving these integrals, including substitutions and properties of the gamma function. The conversation highlights the enjoyment and challenge of tackling these mathematical problems. Overall, the thread showcases a collaborative effort to explore and solve complex integrals.
polygamma
Messages
227
Reaction score
0
Here's an eclectic bunch.1) $ \displaystyle \int_{0}^{\infty} \frac{x^{2}}{(1+x^{5})(1+x^{6})} \ dx $2) $ \displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{\varphi})^{\varphi}} \ dx $ where $\varphi$ is the golden ratio3) $ \displaystyle \int_{0}^{\infty} \sin \left(x^{2} + \frac{1}{x^{2}} \right) \ dx $4) $ \displaystyle \int_{0}^{\infty} e^{-x} \text{erf}(\sqrt{x}) \ dx $ where $\text{erf}(x)$ is the error function5) $\displaystyle \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx $
 
Mathematics news on Phys.org
Random Variable said:
1) $ \displaystyle \int_{0}^{\infty} \frac{x^{2}}{(1+x^{5})(1+x^{6})} \ dx $
Sub $x = \tan(t)$, then $\displaystyle I = \int_{0}^{\pi/2}\frac{\tan^2{t}~\sec^2{t}}{\left(1+\tan^{6}{t} \right)\left(1+\tan^5{t}\right)}\;{dt}.$ Sub $t \mapsto \frac{\pi}{2}-t$, then $ \displaystyle I = \int_{0}^{\pi/2}\frac{\tan^2{t}~\cot^2{t}}{\left(1+\cot^{6}{t} \right)\left(1+\cot^5{t}\right)}\;{dt}.$ Then by adding $\displaystyle 2I = \int_{0}^{\pi/2}\frac{2\sin^2{2t}}{3\cos{4t}+5}\;{dt} = \int_{0}^{\pi/2}\frac{1}{1+4\cot^2{2t}}\;{dt}$. Sub $t = \tan^{-1}{\ell}$ then $ \displaystyle I = \frac{1}{2}\int_{0}^{\infty}\frac{\ell^2}{\ell^6+1}\;{d\ell}$. Sub $y = \ell^3$ then $ \displaystyle I = \frac{1}{6}\int_{0}^{\infty}\frac{1}{y^2+1}\;{dy} = \frac{\pi}{12}.$
 
Last edited:
Nice Problems!
Random Variable said:
2) $ \displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{\varphi})^{\varphi}} \ dx $ where $\varphi$ is the golden ratio

Consider \( I(a)=\displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{a})^{a}} \ dx \)

\( I(a)=\displaystyle \int_{0}^{\infty} \left( \frac{1}{1+x^{a}} \right)^a dx \)

By the substitution \(\displaystyle u=\frac{1}{1+x^a} \) we obtain:

\( \displaystyle I(a)=\frac{1}{a}\int_{0}^{1}u^a \left( \frac{1}{u} \right)^2 \left( \frac{1}{u}-1\right)^{\frac{1}{a}-a}du=\frac{1}{a}\int_{0}^{1}u^{a-\frac{1}{a}-1}(1-u)^{\frac{1}{a}-1} du=\frac{\Gamma{\left( a-\frac{1}{a}\right)}\Gamma{\left( \frac{1}{a}\right)}}{a\Gamma{\left(a \right)}}\)

Therefore \( \displaystyle I(\varphi)= \frac{\Gamma{\left( \varphi-\frac{1}{\varphi}\right)}\Gamma{\left( \frac{1}{\varphi}\right)}}{\varphi\Gamma{\left( \varphi \right)}} \)

It is known that \( \displaystyle \frac{1}{\varphi}=\varphi-1 \).

So finally we get \( \displaystyle I(\varphi)=\frac{\Gamma(1)\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}= \dfrac{\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}=\boxed{1}\)
 
Last edited:
sbhatnagar said:
So finally we get \( \displaystyle I(\varphi)=\frac{\Gamma(1)\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}= \boxed{\dfrac{\Gamma(\varphi-1)}{\varphi \Gamma(\varphi)}}\)
Which is 1. (Rofl)

I think there should be a clever way of doing this without employing the gamma function!
 
Another approach for the first one is to let $\displaystyle x = \frac{1}{u}$.

My approach to the second one was the same as sbhatnagar except I immediately used $ \displaystyle \int_{0}^{\infty} \frac{1}{(1+x^{a})^{b}} \ dx = \frac{1}{a} B \left (\frac{1}{a},b- \frac{1}{a} \right) $
 
Problem 5

Let \(\displaystyle I= \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx \)

Note that:

\( \displaystyle \cos (\cos x) \cosh (\sin x) = \left(\frac{e^{i\cos{x}}+e^{-i\cos{x}}}{2}\right) \left( \frac{e^{\sin{x}}+e^{-\sin{x}}}{2}\right) = \cdots=\frac{\cos(e^{ix})+\cos{(e^{-ix}})}{2} \)\( \displaystyle I=\int_{0}^{2\pi} \frac{\cos(e^{ix})+\cos{(e^{-ix}})}{2} dx=\frac{1}{2} \int_{0}^{2\pi}\cos(e^{ix})+\cos{(e^{-ix}}) \ dx \)

Let \( \displaystyle I_1=\int_{0}^{2\pi} \cos(e^{ix})dx \) and \( \displaystyle I_2=\int_{0}^{2\pi} \cos(e^{-ix})dx \)

\( \displaystyle \begin{align*} I_1 &=\int_{0}^{2\pi} \cos(e^{ix})dx \\ &= \int_{0}^{2\pi} \Big( 1-\frac{e^{2ix}}{2!}+\frac{e^{4ix}}{4!}-\cdots \Big) dx \\ &= 2\pi-0 \\ &= 2\pi\end{align*} \)

\( \displaystyle \begin{align*} I_2 &=\int_{0}^{2\pi} \cos(e^{-ix})dx \\ &= \int_{0}^{2\pi} \Big( 1-\frac{e^{-2ix}}{2!}+\frac{e^{-4ix}}{4!}-\cdots \Big) dx \\ &= 2\pi-0 \\ &= 2\pi\end{align*} \)

Therefore \( \displaystyle I=\frac{I_1+I_2}{2}=\frac{4\pi}{2}= \boxed{2\pi} \)
 
Again my solution is similar to sbhatnagar's.

$\displaystyle \cos (\cos x) \cosh (\sin x) = \text{Re} \ \cos (e^{ix}) $

So $\displaystyle \int_{0}^{2 \pi} \cos (\cos x) \cosh (\sin x) \ dx = \text{Re} \int_{0}^{2 \pi} \cos (e^{ix}) \ dx $

$ \displaystyle \text{Re} \int\limits_{|z|=1} \frac{\cos (z)}{iz} \ dz = \text{Re} \ 2 \pi \ \text{Res} \ \left[\frac{\cos (z)}{z}, 0 \right] = 2 \pi (1) = 2 \pi$
 
Here's mine for the first

Let $\displaystyle I = \int_0^{\infty} \dfrac{x^2}{(1+x^5)(1+x^6)}dx$

Then under a change of variable $x \to 1/x$ gives

$\displaystyle I = \int_0^{\infty} \dfrac{x^7}{(1+x^5)(1+x^6)}dx$

Then adding gives

$\displaystyle 2I = \int_0^{\infty} \dfrac{x^2 +x^7}{(1+x^5)(1+x^6)}dx =\int_0^{\infty} \dfrac{x^2}{1+x^6}dx = \dfrac{\pi}{6} $

Solving for I gives $\pi/12$ and stated earlier.
 
My solution to (3)

Let $\displaystyle I= \int_0^{\infty} \sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Let $x \to \dfrac{1}{x}$ gives

$\displaystyle I= \int_0^{\infty} \dfrac{1}{x^2}\sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Adding gives

$\displaystyle 2 I= \int_0^{\infty}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Now split the integral up into the following two

$\displaystyle 2 I= \int_0^{1}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx + \int_1^{\infty}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx$

Under the change of variable $x \to \dfrac{1}{x}$ the second integral becomes the first so we have

$\displaystyle I= \int_0^{1}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx $

Now let $u =\dfrac{1}{x} - x$ so

$\displaystyle I = \int_0^{\infty} \sin (u^2 + 2)du = \sin 2 \int_0^{\infty}\cos u^2 \;du + \cos 2 \int_0^{\infty} \sin u^2 =\sqrt{\dfrac{\pi}{2}}\left( \sin 2 + \cos 2\right)$.
 
  • #10
And (4), if we re-write the integral

$\displaystyle \int_0^{\infty} e^{-x} \text{erf} \sqrt{x} dx = \frac{2}{\sqrt{\pi}}\int_0^{\infty} \int_0^{\sqrt{x}} e^{-x} e^{-y^2} dy dx$

Reversing the order of integration gives

$\displaystyle \frac{2}{\sqrt{\pi}}\int_0^{\infty} \int_{y^2}^{\infty} e^{-x} e^{-y^2} dx dy = \frac{2}{\sqrt{\pi}}\int_0^{\infty} e^{-2y^2} dy= \frac{2}{\sqrt{\pi}} \frac{\sqrt{2\pi}}{4} = \frac{1}{\sqrt{2}}$
 
  • #11
Another solution to the third integral.

$ \displaystyle \int_{0}^{\infty} \sin \left( x^{2}+ \frac{1}{x^{2}} \right) \ dx = \int_{0}^{\infty} \sin \Bigg( \Big( x - \frac{1}{x} \Big)^{2} +2 \Bigg) \ dx $

$ \displaystyle = \sin(2) \int_{0}^{\infty} \cos \Bigg( \Big(x-\frac{1}{x} \Big)^{2} \Bigg) \ dx + \cos(2) \int_{0}^{\infty} \sin \Bigg( \Big(x-\frac{1}{x} \Big)^{2} \Bigg) \ dx$$ \displaystyle \int_{0}^{\infty} f \Bigg( \Big(ax - \frac{b}{x} )\Big)^2 \Bigg) \ dx = \frac{1}{b} \int_{0}^{\infty} f (u^{2}) \ du \ \ a,b>0$so $ \displaystyle \int_{0}^{\infty} \sin \left( x^{2}+ \frac{1}{x^{2}} \right) \ dx= \sin(2) \int_{0}^{\infty} \cos (x^{2}) \ dx + \cos(2) \int_{0}^{\infty} \sin (x^{2}) \ dx$

$ = \displaystyle \frac{1}{2} \sqrt{\frac{\pi}{2}} \big( \sin(2)+\cos(2)\big) $
 
Last edited:
  • #12
Danny said:
Now split the integral up into the following two

$\displaystyle 2 I= \int_0^{1}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx + \int_1^{\infty}\left( 1 + \dfrac{1}{x^2}\right) \sin \left(x^2+\dfrac{1}{x^2}\right)dx$
Note that in both cases you could've applied that ${x^2} + \dfrac{1}{{{x^2}}} = {\left( {x - \dfrac{1}{x}} \right)^2} + 2.$ So it's a bit shorter.

Didn't see previous post, but that is.
 
  • #13
@Random Variable: These are very entertaining problems. Can I ask you where are these from? :)
 
  • #14
The first two and the last one I saw posted on the Art of Problem Solving forums a long time ago. I don't remember where I originally saw the third one. And the fourth one is on most Laplace transform tables. I have a notebook of hundreds.
 
  • #15
Markov said:
Note that in both cases you could've applied that ${x^2} + \dfrac{1}{{{x^2}}} = {\left( {x - \dfrac{1}{x}} \right)^2} + 2.$ So it's a bit shorter.

Didn't see previous post, but that is.
i can't get it
 
  • #16
oasi said:
i can't get it

Why not? Do you know how to multiply?

$$\begin{align*} \left( x-\frac{1}{x}\right)^2+2 &=x^2+\frac{1}{x^2}-2+2 \\ &= x^2+\frac{1}{x^2}\end{align*}$$
 
Back
Top