wofsy
- 724
- 0
Can anyone explain/give a good reference for Stiefel-Whitney homology classes?
yyat said:One can of course take the Poincaré dual of a cohomology class and obtain a homology class, see for example the paper "Stiefel-Whitney homology classes" by Halperin & Toledo (Ann. of Math.). In fact, applied to the tangent bundle, these classes have a very simple description in terms of a triangulation K (simplicial structure) on the manifold: the pth Stiefel-Whitney homology class of TM is represented by the mod-2 cycle which is the sum of all p-simplices of the first barycentric subdivision of K.