What are the allowed radii and energy levels in the Bohr model?

AI Thread Summary
The Bohr model accurately predicts energy levels for one-electron atoms, including hydrogen and its ions. The allowed Bohr radii can be derived using the formula involving quantum number N, the charge of the electron, and the nucleus's proton count Z. Kinetic and potential energy equations were discussed, leading to the conclusion that energy levels can be expressed without the variable r. The discussion also included calculating the smallest Bohr orbit radius for a negative muon bound to a nucleus with 97 protons, resulting in a numeric answer of approximately 2.62e-15 meters. The calculations emphasize the importance of adjusting mass for different particles while applying the Bohr model equations.
guitarguy1
Messages
13
Reaction score
0

Homework Statement


The Bohr model
The Bohr model correctly predicts the main energy levels not only for atomic hydrogen but also for other "one-electron" atoms where all but one of the atomic electrons has been moved, as as in He+ (one electron removed) or Li++ (two electrons removed). To help you derive an equation for the N energy levels for a system consisting of a nucleus containing Z protons and just one electron answer the following questions. Your answer may use some or all of the following variables: N, Z, hbar, pi, epsilon0, e and m

(a) What are the allowed Bohr radii?

(b) What is the allowed kinetic energy? Instead of substituting in your answer for part (a) you may use the variable r.

(c) What is the allowed electric potential energy? Instead of substituting in your answer for part (a) you may use the variable r.

(d) Combining your answers from part (a), (b) and (c) what are the allowed energy levels? our answer should not contain the the variable r (use your result from part (a)).

(e) The negative muon (μ-) behaves like a heavy electron, with the same charge as the electron but with a mass 207 times as large as the electron mass. As a moving μ- comes to rest in matter, it tends to knock electrons out of atoms and settle down onto a nucleus to form a "one-muon" atom. Calculate the radius of the smallest Bohr orbit for a μ- bound to a nucleus containing 97 protons and 181 neutrons. Your answer should be numeric and in terms of meters.

Homework Equations



r=N^2(h^2)/((1/4piepsilon0)*e^2*m)

K=1/2*(1/(4piepsilon0)*e^2/r)

Uelectric=-K

The Attempt at a Solution



Well I figured out the answer to part a). It is (N^2(hbar^2/((1/(4piepsilon0))e^2m)))/Z. I just don't know where to go from here. I tried 1/2*(1/(4piepsilon0)*e^2/r) for the kinetic energy, but that was incorrect. I think that I'm just forgetting to add another variable to the equation (possibly the Z) somewhere. I just don't know where. Please help.
 
Physics news on Phys.org


Is there a reason that nobody has made an attempt to answer my question?
 


Alright I figured out what I was doing wrong for parts B, C, and D. I got (1/2)*(Z/(4piepsilon0))*e^2/r for B), -((Z/(4piepsilon0))*e^2/r) for C) and -(1/2)*(Z/(4piepsilon0))*e^2/((N^2(hbar^2/((1/(4piepsilon0))e^2m)))/Z) for D).

I would just like some guidance now on this last part.

(e) The negative muon (μ-) behaves like a heavy electron, with the same charge as the electron but with a mass 207 times as large as the electron mass. As a moving μ- comes to rest in matter, it tends to knock electrons out of atoms and settle down onto a nucleus to form a "one-muon" atom. Calculate the radius of the smallest Bohr orbit for a μ- bound to a nucleus containing 97 protons and 181 neutrons. Your answer should be numeric and in terms of meters.

I think it just involves changing the mass of the, but just using the same answer that I found to part A. Please tell me if I'm heading in the right direction.
 


It is simple once you think about it. You do use the equation from part a. N=1 since the claculated energy level is below .5e-13. hbar = 1.05e-34 J*s. 1/4PiEpsilon = 8.99e9 N*m^2/c^2 and e = 1.60e-19 c. The tricky part is the mass. Since it says the mass is 207 times that of an electron, the mass would be (9.11e-31 * 207). So plug all that into the formula and divide by Z which is the number of proton and you should get an answer like xxxe-15m.

Your answer should be approximately 2.62e-15m
 


gtzpanditbhai said:
It is simple once you think about it. You do use the equation from part a. N=1 since the claculated energy level is below .5e-13. hbar = 1.05e-34 J*s. 1/4PiEpsilon = 8.99e9 N*m^2/c^2 and e = 1.60e-19 c. The tricky part is the mass. Since it says the mass is 207 times that of an electron, the mass would be (9.11e-31 * 207). So plug all that into the formula and divide by Z which is the number of proton and you should get an answer like xxxe-15m.

Your answer should be approximately 2.62e-15m

Thanks. Yea it was simple. I had just gotten so used to putting my answers in terms of variables, I didnt notice that they had asked for a numerical value. : )
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top