What are the Bound States for a Sum of Two Negative Delta-Function Potentials?

Logan Rudd
Messages
15
Reaction score
0
I'm reading through Griffiths Intro to QM 2nd Ed. and when it comes to bound/scattering states (2.5) they say:

##E<0 \implies## bound state

##E>0 \implies## scattering state

Why doesn't this change depending on whether you have a positive or negative delta-function potential?
 
Last edited:
Physics news on Phys.org
It does change. If you have a positive delta-function potential, there are no bound states.
 
Why is that, and why is it not the case for a negative delta-function potential?
 
A positive delta function potential only has scattering states since it's just a scattering problem. The reason it has no bound states is the same reason that a positive finite potential well has no bound states. A positive delta-function potential has no way to "trap" a particle into a bound state.

A negative delta-function potential has 1 (and only 1) bound state, but to figure that out, you actually have to go ahead and solve the problem.
 
Ahh, I see! But if the potential I am working with is the sum of two negative delta potentials then would there be two bound states? I'm trying to work it out in a similar fashion as the text works it out for a a single negative delta potential centered at 0 but since both of mine are centered about ##\pm a## how do I break it up into sections. I tried analyzing from ##x<-a##, ##-a<x<0## to get ##\psi(x) = Be^{-\kappa x}## and for ##x>a##, ##0<x<a## to get ##\psi(x) = Be^{-\kappa x}## but it seems like there is more to it than that.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top