What Are the Boundary Conditions for E and V at a Conductive Surface?

sluthy
Messages
1
Reaction score
0
"Appropriate boundary conditions"...?

I am stumped by a question in my Electromagnetism asignment that asks, after determining the potential (V) and electric field (E) of a hollow conductive sphere containing a point charge system, to "show that E and V satisfy the appropriate boundary conditions at the surfaces of the sphere." What does it mean by "boundary conditions"? What is the question asking me to prove/show?
 
Physics news on Phys.org
I believe they are referring to the perpendicular and parallel components of the electric field E at the conducting surface. E and B have particular properties at the surface of a conductor. Quiz question -- what are those properties?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top