What Are the Eigenvalues and Degeneracies in Spin and Degeneracy Calculations?

Nico045
Messages
9
Reaction score
0

Homework Statement



S=1/2
I1=I2=1/2 (nuclear spin)

I=I1+I2
J=S+I

Homework Equations



H= a S . I1 + a S.I2

The Attempt at a Solution



A) Find the values of I, the eigenvalues of I2, their degree of degeneracy and show that [H,I2]=0Using momentum addition I get
I = 0 or 1
I2 has for eigenvalues : ħ2I(I+1)

degree of degeneracy :
for I=1 ==> d=3
for I=0 ==> d=1[H,I2]= [H, I1²] +[H,I2²] + 2 [H,I1I2] = [H, I1²] +[H,I2²]+ 2 I1 [H,I2] + 2 I2 [H,I1]

H= a S . I1 + a S.I2

I don't see how to calculate this since we have S.In


B) Find the values of J, the eigenvalues of J2, their degree of degeneracy and show that [H,J2]=0

J=S+I , it gives 2 values :
J= 1/2 { 1-1/2 // 0+1/2 }
J= 3/2 { 1+1/2 }
J2 has for eigenvalues : ħ2J(J+1)

degree of degeneracy :
J=1/2 ==> d=6
J=3/2 ==> d=2

[H,J2]= [H, I2] + [H,S2] + 2 [H,I.S]
same problemC) Find the eigenvalues of H= a ( S . I1 + S.I2) and their degeneracyI guess I have to use J2 :

S.I = S.I1 + S.I2 = 1/2 ( J^2 -S^2 -I^2 )

and the eigenvalues of H are : a * ħ2/2 ( J(J+1) - S(S+1) - I(I+1) )I am not sure to know how degeneracy is calculated for example : in (A) d(I) = 4 so d( I²) = 16 ?D) is {J2, J2z} forming a CSCO ? What about {I2,J2, J2z} ?

This concept isn't very clear to me.
 
Physics news on Phys.org
I managed to solve a few things but the remaining problem is about degeneracy :

for I1 = I2 = 1/2
I=I1+I2

what are the degeneracies for I² ?
for I we have (2I1+1)*(2I2+1) = 2*2 = 4
but for I² is it just d(I) * d(I) = 16 ?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top