What Are the Eigenvalues and Degeneracies of a Coupled Ising Spin System?

Krischi
Messages
2
Reaction score
0

Homework Statement

Consider two Ising spins coupled together
−βH = h(σ1 + σ2) + Kσ1σ2,
where σ1 and σ2 commute and each independently takes on the values ±1.
What are the eigenvalues of this Hamiltonian? What are the degeneracies of the states?

The Attempt at a Solution

Four possible combinations for (σ1,σ2): (1,1), (1,-1), (-1,1) and (-1,-1).
Therefore H=(-h/β)*(σ1 + σ2) + K/β*σ1σ2 can be written in a 2×2 matrix. And the eigenvalues λ are obtained by det(H-Eλ)=0.

it follows: [(-2h/β)-(K/β)-λ)][(-2h/β)-(K/β)-λ)]-(2K/β)=0

and so: λ1,2=-((2h-K)/β)±sqrt[(2h-K)22)-((2h-K)22-(2K/β)]

and: λ1,2=-((2h-K)/β)±sqrt[2k/β]

Are these really the eigenvalues of the hamiltonian? I don't gain any physical insight by this solution and therefore I doubt my calculation. I don't know how to go on and clculate the degeneracies of the states.

Thanks in advance!
Krischi
 
Physics news on Phys.org
You should use a 4x4 matrix for the Hamiltonian --- the system has 4 basis states (which you listed). Find the eigenvalues of that matrix.
 
Really, a 4\times4 matrix? If there are 4 base states, why can't I use a 2\times2 matrix? 4 states fit into a 2\times2 matrix, right? I tried this and calculated 2 eigenvalues, \lambda, but I am not sure, if the result is correct, since it "looks" to complicated (see my 1st reply)
 
genneth is right, for 4 base states you need a 4x4 matrix.
Consider for a moment a Hamiltonian for a single spin that can be +1 or -1. We need to know how the Hamiltonian operator acts on the particle if its spin is +1 and also how the Hamiltonian acts on the particle if its spin is -1. Thus, we need a basis state for each state of the particle.

In your case you have two particles. So you have two particles with two states each 2*2 = 4 basis states. You need to know how the Hamiltonian acts on each individual configuration of spins and there are 4 possible configurations.

Hope that helps
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top