What are the equations for conic sections in 4 dimensions?

  • Thread starter Thread starter MarcL
  • Start date Start date
  • Tags Tags
    Function Variable
MarcL
Messages
170
Reaction score
2

Homework Statement



The problem is given in the picture attached. However we are given the equation of a 4 dimensional shape with certain choice given to explain the shape in that dimension.

Homework Equations



Equations of different shape such as:

sphere: √(x^2+y^2+z^2) = r
Ellipse: (x-h)/a^2 + (y-k)/b^2 = K
Hyperbola: (x-h)/a^2 - (y-k)/b^2 = 1

The Attempt at a Solution



Well for question one and two, I said 1 ( which is w=x^2+y^2+z^2) is a "a collection of equally spaced concentric spheres" and 2 ( w=√(x^2+y^2+z^2) was "a collection of unequally spaced concentric spheres ".Though I know the difference between both is the radius where one is w and the other is √w. But why does have a radius of √w make the sphere unequally spaced?

My teacher barely touched the topic so I have a hard time figuring out how to visualize these shapes.
 
Physics news on Phys.org
I couldn't see my attachment... here it is ( trying again)
 

Attachments

  • untitled 2.jpg
    untitled 2.jpg
    26.1 KB · Views: 398
You are correct about #1.
 
You are correct about #1. I do know the answers to some of the others, and can guess some, but perhaps it would be best to tell you how I would go about this if I had to do the problem.

Go back to 3 dimensions, and look up the equations of the conic sections. Answer the questions when z is omitted. It has to be similar in 4 dimensions.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top