natugnaro
- 61
- 1
[SOLVED] Qunatum Angular Momentum
Particle is in state
\psi=A(x+y+2z)e^{-\alpha r}
r=\sqrt{x^{2}+y^{2}+z^{2}
A and alpha are real constants.
a) Normalize angular part of wave function.
b) Find <\vec{L}^{2}> , <L_{z}>
c) Find probability of finding L_{z}=+\hbar.
{L}^{2}= \hbar^{2}l(l+1)|lm>
L_{z}=m \hbar|lm>
I have found a) part
T(\theta,\phi)=\frac{1}{2\sqrt{3}}(1+i)Y^{-1}_{1}-\frac{1}{2\sqrt{3}}(1-i)Y^{1}_{1}+\frac{2}{\sqrt{6}}Y^{0}_{1}
b)
Since Y^{m}_{l}=|lm>
Using L_{z}=m \hbar|lm>
<Lz>= 1/(4*3)*2<1-1|Lz|1-1> + 1/(4*3)*2<11|Lz|11> + 4/6<10|Lz|10> = 0
To find <\vec{L}^{2}> I would apply operator of L^2 to angular part of wave function, just like I have done for Lz.
{L}^{2}= \hbar^{2}l(l+1)|lm>
Is this is the way to find expectation values ?
c)
P(\hbar)=|-\frac{1}{2\sqrt{3}}(1-i)|^{2}=\frac{2}{12}
Homework Statement
Particle is in state
\psi=A(x+y+2z)e^{-\alpha r}
r=\sqrt{x^{2}+y^{2}+z^{2}
A and alpha are real constants.
a) Normalize angular part of wave function.
b) Find <\vec{L}^{2}> , <L_{z}>
c) Find probability of finding L_{z}=+\hbar.
Homework Equations
{L}^{2}= \hbar^{2}l(l+1)|lm>
L_{z}=m \hbar|lm>
The Attempt at a Solution
I have found a) part
T(\theta,\phi)=\frac{1}{2\sqrt{3}}(1+i)Y^{-1}_{1}-\frac{1}{2\sqrt{3}}(1-i)Y^{1}_{1}+\frac{2}{\sqrt{6}}Y^{0}_{1}
b)
Since Y^{m}_{l}=|lm>
Using L_{z}=m \hbar|lm>
<Lz>= 1/(4*3)*2<1-1|Lz|1-1> + 1/(4*3)*2<11|Lz|11> + 4/6<10|Lz|10> = 0
To find <\vec{L}^{2}> I would apply operator of L^2 to angular part of wave function, just like I have done for Lz.
{L}^{2}= \hbar^{2}l(l+1)|lm>
Is this is the way to find expectation values ?
c)
P(\hbar)=|-\frac{1}{2\sqrt{3}}(1-i)|^{2}=\frac{2}{12}