What Are the Formulas for Calculating Height in Synchronous Orbit?

AI Thread Summary
To calculate the height for a synchronous orbit over Mars, the radius of Mars must be considered along with the orbital period, which matches the planet's rotation. The relevant formulas include gravitational force (Fg), centripetal acceleration (ac), and the relationship between orbital period (T) and radius (r). The period for Mars is given as T=8.85*10^4 seconds, and its mass is approximately 6.37*10^23 kg. Understanding the connection between radius and period is crucial for determining the necessary height for the orbit. Proper application of these equations will yield the required altitude for synchronous orbit.
Shelilla
Messages
15
Reaction score
0

Homework Statement


In order for the enterprise to use its transporter it must be in synchronous orbit over the beam-down point. What heigh above the planet Mars must the enterprise be for a synchronous orbit?

Homework Equations


Please, can someone tell me for future reference what I should use in the formulas for this sort of equation? For every solution I've tried on this, all of them require some radius, so should I use the radius of mars?? And please don't just tell me 'combine Newton's something law and something something law' because frankly that doesn't mean anything to me and confuses me extremely, because I find it very hard and incomprehensible to combine formulas.

Fg= Gm1m2/r^2
ac=4pi^2r/T^2
F=ma?
g=Fg/m?
T=sqrt4pi^2r^3/Gm?
v=sqrtGm/r?

The Attempt at a Solution


I've tried several, but I'm just not sure where to start. Should I get the Fg? The ac? I was told that since it's in a synchronous orbit the period of rotation will be the same as the planet, so all I know for sure so far is that T=8.85*10^4 s and m=6.37*10^23 kg
 
Physics news on Phys.org
Shelilla said:
I was told that since it's in a synchronous orbit the period of rotation will be the same as the planet, so all I know for sure so far is that T=8.85*10^4 s and m=6.37*10^23 kg
So how do you accomplish this. What is the relation between the radius and the period?
 
Orodruin said:
So how do you accomplish this. What is the relation between the radius and the period?
Velocity?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top