What are the important lessons in linear algebra for Quantum?

AI Thread Summary
To grasp Quantum Mechanics effectively, a solid understanding of Linear Algebra is essential, particularly in areas such as vector spaces and transformations. Key concepts include the importance of abstract vectors, which represent quantum systems, and the process of projecting these vectors into different representations, like momentum space, using operators. A deep comprehension of linear transformations and matrices is crucial, as they facilitate the transition between different vector spaces. Additionally, familiarity with eigenvalues, eigenvectors, and the diagonalization of Hermitian operators enhances theoretical understanding. Understanding the interplay between differential operators and linear algebra, along with dual vector spaces, further solidifies the foundational knowledge needed for Quantum Mechanics.
Ayham
Messages
16
Reaction score
0
This may sound like a dumb question, I heard that to understand Quantum Maths, I have to know Linear Algebra, Calculus, Differential Equations...
I don't have any problems with Calculus and Differentials but Linear Algebra was a bit foggy sometimes... What are the topics in Linear Algebra that i should fully understand for Quantum Mechanics? Are Images and pre-images important?
 
Last edited:
Physics news on Phys.org
You need to understand vector spaces and transformations between different vector spaces (matrices).

You're going to be told in quantum that quantum systems are defined by "abstract vectors" and to find out something about the quantum system (such as the momentum of a particle), you're going to have to project said abstract vector into the "momentum space" representation of the quantum system. You do this by operating on a "ket" with the momentum operator (much like a matrix operates on a vector in one space to transform it to the same vector in a different space representation.)

Having a natural understanding of linear algebra (not just some silly computational linear algebra course either - one that starts with abstract vectors spaces, then goes to linear transformations between vectors spaces, and then finally discusses matrices later in this context), the terminology and common ideas, REALLY helps in the understanding and discussion of the ideas in quantum. Much of the flow is the same.
 
On the computational side, know how to compute eigenvalues and eigen vectors. Understand why hermitian operators are diagonalized in their eigenbasis. Understanding the relationship between differential operators and linear algebra as well as dual vector spaces gave me more theoretical comfort.
 
Ok, thanks guys
 
Bit Britain-specific but I was wondering, what's the best path to take for A-Levels out of the following (I know Y10 seems a bit early to be thinking about A-levels, but my choice will impact what I do this year/ in y11) I (almost) definitely want to do physics at University - so keep that in mind... The subjects that I'm almost definitely going to take are Maths, Further Maths and Physics, and I'm taking a fast track programme which means that I'll be taking AS computer science at the end...
After a year of thought, I decided to adjust my ratio for applying the US/EU(+UK) schools. I mostly focused on the US schools before, but things are getting complex and I found out that Europe is also a good place to study. I found some institutes that have professors with similar interests. But gaining the information is much harder than US schools (like you have to contact professors in advance etc). For your information, I have B.S. in engineering (low GPA: 3.2/4.0) in Asia - one SCI...
I graduated with a BSc in Physics in 2020. Since there were limited opportunities in my country (mostly teaching), I decided to improve my programming skills and began working in IT, first as a software engineer and later as a quality assurance engineer, where I’ve now spent about 3 years. While this career path has provided financial stability, I’ve realized that my excitement and passion aren’t really there, unlike what I felt when studying or doing research in physics. Working in IT...

Similar threads

Replies
11
Views
4K
Replies
60
Views
6K
Replies
9
Views
2K
Replies
16
Views
2K
Replies
6
Views
2K
Replies
5
Views
2K
Back
Top