Saw said:
altonhare, the second part of your post is a brilliant description of why SR and LR are said to render the same practical results..., as a general rule. However, in the first part of your post, you seem to give me a reason why the issue posed in this thread should not be an exception, but I do not see the reason. According to LR, if there is an ether, that "tiny thin fraction of the spherical "light wave" that is visible should follow a path that is dependent on the state of motion (or no motion or whatever) of the ether but it should not follow the direction of motion of the source and should not hit the target it was pointing at in the source frame...
Thank you kindly for the compliment, I was hoping it was clear!
Perhaps I can help make things more clear, I hope.
In the Lorentzian aether view, light's qualitative characteristics are *no different* than sound with the exception of the Lorentzian velocity-dependent symmetric wavelength broadening.
In the Einsteinian view this wavelength broadening is called "time dilation" because an atomic clock, which measures this "time" by the number of photon emissions N, emits light of a longer wavelength (fewer photon emissions) when in relative motion. Therefore each photon emission indicates a longer "time" has elapsed for the clock in motion wrt the aether as compared with a clock that is stationary wrt the aether.
An object that traverses a distance d through the aether emits N1 photons as another object traverses d/2. If there were no Lorentzian wavelength broadening we would expect the second object to emit exactly N1 photons as well, i.e. each photon indicates the precise same interval whether emitted from object 1 or 2. However, as Lorentz discovered, the second object will not emit N1 but rather N1/(1+(d
2/(4*c
2)). The slower object's unit of time (a photon) is shorter than the faster object's unit of time.
So, just like sound, wrt the medium carrying the signal its velocity remains the same i.e. the basic formula c=f*w always applies. Only the wavelength changes and frequency is both the physical and mathematical opposite and inverse of wavelength so their product is always 1.
So, since light behaves just like sound, it does not acquire the speed of its source. The velocity of sound in air is always constant wrt the air, and the speed of light in the aether is always constant wrt the aether. An observer moving wrt the aether would detect a Newtonian/Galilean velocity shift except that their clock always ticks slower to counter this and produce the same result for velocity of light.
Observer 1 is carrying a light emitting object as a clock. It emits light signals that are the distance w apart when the observer is not moving relative to a ball that also emits light signals a distance w apart. (rest wavelength of light emitted by both objects is identical).
Observer 1 and the ball are a distance D from each other before moving. The speed of light is, then, D/w by definition i.e. it is the number of photons emitted by the clock as a single photon makes the path between ball and observer.
If they are not in relative motion then the observer counts identical numbers of photons from his/her own clock and from the ball. The observer has no idea what w or D is, nothing really. All the observer knows is that the propagation speed of a photon is its distance-traveled (D) divided by the number of photon emissions of his clock during that distance-traveled.
The observer (or the ball) moves an infinitesimal bit back (distance d1) while the observer counts photons from his/her clock. Obs 1 determines his/her velocity to be d1/N1, where N1 is the number of photons released by the observer's clock as the observer traversed d. The observer also determines the wavelength of light emitted by his/her clock (w) to be d1/N1. The observer also counts Nb1 photons from the ball. The observer determines the velocity of light, according to his own clock/reference, to be C1 = (N1*D)/d1. The velocity of light relative to the ball is also C2 = Nb*D/d2. The observer doesn't know Nb because Nb is the number of photons emitted by the ball, not the number of photons the observer sees from the ball. The latter is Nb1.
Are N1/d1 and Nb1/d1 related such that C1 and C2 always come out the same? First of all, the observer has to account for the standard doppler shift when calculating Nb. That's easy enough:
Nb0/d1 = N1*D/d1 - d1/N1
But also the observer must account for Lorentzian broadening:
Nb/d1 = Nb0/sqrt(1-[(d1/N1)
2/(N1*D/d1)
2]
= N1/d1 if you do it right.
So the velocity of light is always measured the same.
There is one experimental test that has yet to be done and probably never will be done for practical reasons. The aether is described as "pervading all space" but, to constitute an absolute or preferred frame it must have a boundary. Otherwise how can anything move with respect to it? From whence would motion be gauged within it? Indeed, if the aether were truly "infinite" i.e. without a boundary it's worthless rubbish. For an object alone in such 'an' infinite "entity" it would be impossible to determine its change in location, from where would it determine its location? It would need another object, something with a boundary, in order to determine this.
So, if there's an absolute/preferred frame, it must have a boundary. If it doesn't have a boundary it is not only empirically and practically useless but scientifically and philosophically unsound. The final test for such a hypothesis is to hop in a ship and start flying in search of the aether's boundary itself. Good luck.
Saw, ultimately if you want to understand how light works you have to first understand how waves work. Whether there's an aether or not light behaves like a wave with the exception of Lorentzian broadening. So familiarize yourself (or review) your wave physics.