Ok, so far I have shown that ##|\psi_-\rangle## (S = 0 singlet state) is rotationally invariant in the x-z plane (indeed, as
@wle showed, its correlation function is a dot product in any plane). That means we can choose ##\sigma_1 = \sigma_z##, i.e., the eigenbasis being used, and ##\sigma_2 = \cos(2\theta)\sigma_z + \sin(2\theta)\sigma_x##. This gives a correlation function of ##-\cos(2\theta)## for ##|\psi_-\rangle## (from
@wle ##a_x = a_y = 0; a_z = 1## and ##b_z = \cos(2\theta)##). All this obtains because we have conservation of angular momentum with the total equal to zero. Now for the S = 1 triplet states.
I showed that ##|\phi_+\rangle## is also invariant under rotations in the x-z plane, so we can again choose ##\sigma_1 = \sigma_z## and ##\sigma_2 = \cos(2\theta)\sigma_z + \sin(2\theta)\sigma_x##. This gives a correlation function of ##\cos(2\theta)## for ##|\phi_+\rangle## (from
@wle ##a_x = a_y = 0; a_z = 1## and ##b_z = \cos(2\theta)##). Restricting ourselves to measurements in the x-z plane means the correlation function is given by ##\hat{a}\cdot\hat{b}## in
@wle's analysis, which is how his result shows rotational invariance in the x-z plane for ##|\phi_+\rangle##.
Next, I showed that ##|\phi_-\rangle## is invariant under rotations in the y-z plane, so we can again choose ##\sigma_1 = \sigma_z## and ##\sigma_2 = \cos(2\theta)\sigma_z + \sin(2\theta)\sigma_y##. This gives a correlation function of ##\cos(2\theta)## for ##|\phi_-\rangle## (from
@wle ##a_x = a_y = 0; a_z = 1## and ##b_z = \cos(2\theta)##). Restricting ourselves to measurements in the y-z plane means the correlation function is given by ##\hat{a}\cdot\hat{b}## in
@wle's analysis, which is how his result shows rotational invariance in the y-z plane for ##|\phi_-\rangle##.
To finish the analysis, we need to find the plane in which ##|\psi_+\rangle## is invariant under rotations. We look to
@wle's analysis and realize that we have a correlation function of ##\hat{a}\cdot\hat{b}## for ##|\psi_+\rangle## when we're in the x-y plane, so first put ##|\psi_+\rangle## in the eigenbasis of ##\sigma_x## via rotation by ##45^o## and then look to find the transformation that leaves it invariant (in other words, get us out of the z basis, since we suspect that our plane of rotational invariance will be the x-y plane). We find ##|\psi_+\rangle \rightarrow |\phi_-\rangle## in the x basis and we already solved that problem. So, we now know that our plane of rotational invariance is the x-y plane and we can choose ##\sigma_1 = \sigma_x##, i.e., our eigenbasis, and we have ##\sigma_2 = \cos(2\theta)\sigma_x + \sin(2\theta)\sigma_y##. This then gives a correlation function of ##\cos(2\theta)## for ##|\psi_-\rangle## (from
@wle ##a_y = a_z = 0; a_x = 1## and ##b_x = \cos(2\theta)##). Restricting ourselves to measurements in the x-y plane means the correlation function is given by ##\hat{a}\cdot\hat{b}## in
@wle's analysis, which is how his result shows rotational invariance in the x-y plane for ##|\psi_+\rangle##.
What does all this mean? Obviously, each triplet state represents a plane containing your S = 1 conserved angular momentum vector. If you want your conserved S = 1 angular momentum vector to reside in another plane, you simply create a superposition, i.e., expand in the triplet basis. Now, all this sometimes leads people to believe that we actually have a hidden conserved pair of aligned vectors of value ##\frac{\hbar}{2}##. But, since every state tells you that Alice and Bob will obtain ##\pm \frac{\hbar}{2}## for every measurement, it would be an amazing coincidence or contrivance if those outcomes were based on a hidden variable. Instead, see my
Insight for what I believe is a much more reasonable explanation for this type of conservation.