fifthrapiers
- 3
- 0
I'm having trouble with commutators. I have to solve them 2 ways. First, using [x,p]=i\hbar and other identities/formulas, and the the second method the "direct way".
1.) x,\hat{H}
My work:
[x,\hat{H}]\psi &= x\hat{H}\psi - \hat{H}x\psi
= x \left ( \frac{p^2}{2m} + V(x) \right )\psi - \left ( \frac{p^2}{2m} + V(x) \right )x\psi
= \frac{xp^2\psi}{2m} + x V(x)\psi - \frac{p^2x\psi}{2m} - V(x) x\psi
2.) [\hat{p}, \hat{H} + x]
[\hat{p}, \hat{H} + x]\psi &= \hat{p}(\hat{H}+x)\psi + (\hat{H}+x)\hat{p}\psi
= i\hbar\frac{\partial}{\partial p} \left(\left( \frac{p^2}{2m} + V(x) \right ) + x\right)\psi + \left(\left( \frac{p^2}{2m} + V(x) \right ) + x\right)i\hbar\frac{\partial}{\partial p}\psi
Yikes.
1.) x,\hat{H}
My work:
[x,\hat{H}]\psi &= x\hat{H}\psi - \hat{H}x\psi
= x \left ( \frac{p^2}{2m} + V(x) \right )\psi - \left ( \frac{p^2}{2m} + V(x) \right )x\psi
= \frac{xp^2\psi}{2m} + x V(x)\psi - \frac{p^2x\psi}{2m} - V(x) x\psi
2.) [\hat{p}, \hat{H} + x]
[\hat{p}, \hat{H} + x]\psi &= \hat{p}(\hat{H}+x)\psi + (\hat{H}+x)\hat{p}\psi
= i\hbar\frac{\partial}{\partial p} \left(\left( \frac{p^2}{2m} + V(x) \right ) + x\right)\psi + \left(\left( \frac{p^2}{2m} + V(x) \right ) + x\right)i\hbar\frac{\partial}{\partial p}\psi
Yikes.