What are the practical applications of sets converging to repeating values?

  • Thread starter Thread starter ktoz
  • Start date Start date
  • Tags Tags
    Converging Sets
ktoz
Messages
170
Reaction score
12
Back in the fractal craze, I wrote a simple application to generate the Mandelbrot set, and after way too many wasted hours, I noticed that the generating function frequently converged to sets of repeating values rather than single values. For example, for a 5 value convergent, the terms of the set are related by:

f(x1) = f(x0)
f(x2) = f(x1)
f(x4) = f(x3)
f(x0) = f(x4)

I have two questions related to this:
- Do sets of values that are related by these types of loops, have a name?
- Do these types of convergents have any practical applications?

Reason I ask is that I'm playing around with ideas for a "loopless" computer language and have come up with a few formulas that can eliminate iteration in specialized cases but these "poly-convergents" have always interested me as a potential way to directly calculate more complex states. Problem is though, I don't know what they're called.

Thanks for any info
 
Mathematics news on Phys.org
It's called an "attracting cycle".

As you adjust the parameters, you can watch the cycle "bifuricate"; e.g. you can watch a fixed point split into a two-cycle.
 
Hurkyl said:
It's called an "attracting cycle".

Thanks Hurky
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top