MHB What Determines the Angular Momentum of a Rolling Boulder?

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Hill Roll
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Every one,
Here is the question. How to get started with this question?
A spherical boulder of mass 90.2 kg and radius 20 cm rolls without slipping down a hill 16 m high from rest.
(a)
What is its angular momentum about its center when it is half way down the hill? (Enter the magnitude in kg [FONT=&quot]· m2/s.)
kg [FONT=&quot]· m2/s


(b)
What is its angular momentum about its center when it is at the bottom? (Enter the magnitude in kg [FONT=&quot]· m2/s.)
kg [FONT=&quot]· m2/s


Thanks,
Cbarker1
 
Mathematics news on Phys.org
Cbarker1 said:

A spherical boulder of mass 90.2 kg and radius 20 cm rolls without slipping down a hill 16 m high from rest.
(a)
What is its angular momentum about its center when it is half way down the hill? (Enter the magnitude in kg · m2/s.)
kg · m2/s


(b)
What is its angular momentum about its center when it is at the bottom? (Enter the magnitude in kg · m2/s.)
kg · m2/s


conservation of energy (assuming the boulder starts from rest) ...

initial gravitational potential energy = final gravitational potential energy + translational kinetic energy + rotational kinetic energy

$mgh_0 = mgh_f + \dfrac{1}{2}mv^2 + \dfrac{1}{2}I \omega^2$

note $v = r\omega$ ...

$mgh_0 = mgh_f + \dfrac{1}{2}m(r\omega)^2 + \dfrac{1}{2}I \omega^2$

$2mg(h_0-h_f) = m(r\omega)^2 + I \omega^2$

$2mg(h_0-h_f) = \omega^2(mr^2 + I)$

$\omega = \sqrt{\dfrac{2mg(h_0-h_f)}{mr^2 + I}}$

finally, note $L = I\omega$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top