MHB What Determines the Angular Momentum of a Rolling Boulder?

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Hill Roll
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Every one,
Here is the question. How to get started with this question?
A spherical boulder of mass 90.2 kg and radius 20 cm rolls without slipping down a hill 16 m high from rest.
(a)
What is its angular momentum about its center when it is half way down the hill? (Enter the magnitude in kg [FONT=&quot]· m2/s.)
kg [FONT=&quot]· m2/s


(b)
What is its angular momentum about its center when it is at the bottom? (Enter the magnitude in kg [FONT=&quot]· m2/s.)
kg [FONT=&quot]· m2/s


Thanks,
Cbarker1
 
Mathematics news on Phys.org
Cbarker1 said:

A spherical boulder of mass 90.2 kg and radius 20 cm rolls without slipping down a hill 16 m high from rest.
(a)
What is its angular momentum about its center when it is half way down the hill? (Enter the magnitude in kg · m2/s.)
kg · m2/s


(b)
What is its angular momentum about its center when it is at the bottom? (Enter the magnitude in kg · m2/s.)
kg · m2/s


conservation of energy (assuming the boulder starts from rest) ...

initial gravitational potential energy = final gravitational potential energy + translational kinetic energy + rotational kinetic energy

$mgh_0 = mgh_f + \dfrac{1}{2}mv^2 + \dfrac{1}{2}I \omega^2$

note $v = r\omega$ ...

$mgh_0 = mgh_f + \dfrac{1}{2}m(r\omega)^2 + \dfrac{1}{2}I \omega^2$

$2mg(h_0-h_f) = m(r\omega)^2 + I \omega^2$

$2mg(h_0-h_f) = \omega^2(mr^2 + I)$

$\omega = \sqrt{\dfrac{2mg(h_0-h_f)}{mr^2 + I}}$

finally, note $L = I\omega$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top