Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

B What do I see while falling into a black hole?

  1. Apr 4, 2017 #1
    If I fall into a Schwarzschild black hole and, as I'm falling, look in the direction away from it, what do I see?

    I once heard someone say the rest of the universe would appear to move faster and faster, and as I cross the event horizon it would appear to move infinitely fast.

    I'm not sure this make sense to me because it would imply that I see the end of the universe, yet from the outsider's point of view my existence ends in a finite time. (Or does it?)
  2. jcsd
  3. Apr 4, 2017 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    You need to define "away from it" better.

    "I once heard someone say" is not a valid reference. Please state where you got this.

    The event horizon is a null surface. To a local observer, it moves at the speed of light.

    This statement makes no sense. You need to define what "finite time" means in terms of the outsider's point of view.
  4. Apr 4, 2017 #3

    George Jones

    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    An earlier post of mine:
  5. Apr 4, 2017 #4
    People don't know how close to a black hole general relativity still remains valid. But if we assume it stays valid up to the singularity, then you don't notice anything catastrophic as you pass the event horizon. This site explains it all. http://jila.colorado.edu/~ajsh/insidebh/schw.html

    Some people believe that quantum gravity effects take over. A theory is that you will hit a firewall which instantly burns you to a plasma as you fall into a black hole.
  6. Apr 4, 2017 #5
    There are countless movies on Youtube that show the simulation of the observer falling into a black hole.

    The exact image depends on the type of black hole and the theory assumed for calculations.
  7. Apr 4, 2017 #6
    Thanks all! For some reason I didn't get any email notifications of these replies after the first one.

    This implies that if I am at location B, I'll see a clock at location A running very fast, no? And another (stationary) clock even farther away than location A running even faster? As long as we all stay at a constant position with respect to the black hole. This is what makes this interesting to me - the thought that the closer I get to the event horizon, the faster events in the rest of the universe appear to go.
  8. Apr 4, 2017 #7


    User Avatar
    Staff Emeritus
    Science Advisor

    It's unclear to me when you ask what you "see" when you fall into a black hole, if you actually mean that literally (which is what George answered, it's what you would photograph), or something else, something involving a mental model in your head.

    What we can answer most accurately is what George answered - what you literally photograph.

    To answer what sort of mental model you use turns out to be difficult, due to the fact that it's not clear what simultaneity even means in such cases. The mental model differs from the photograph in the fact that the photograph includes effects like light-speed delays, and typically the mental model involves some concept of "now". The problem is that the concept of "now" is fundamentally ambiguous even in special relativity, and even worse (if that's possible) in General relativity.

    So lets answer the easy question - what you'd directly observe. A stationary observer would observe blue-shifted light, and speeded up motions.

    Red shift and blue shift not only change the frequency of the light, but the rate at which information carried by the light is received. If it took 1 million carrier cycles to encode a complete frame of video, the information encoded on that video wouldn't change when the signal was blue-shifted. The duration of 1 million cycles would be less for a blue-shifted signal than the original signal. So the blue-shifted signal would play the information back faster, as well as having an effect on the carrier frequency.

    An observer falling in from a large distance would have such a high velocity that the doppler shift would more than overcome the gravitational blueshift, so they'd directly observe a net red-shift. The doppler shift involves light-speed delay effects, and is what's actually observed- it's not a mental model.

    Note that if you just want to observe the far future history of the universe, it turns out to be just as eas to do it without a black hole than with. All one needs to do is to use the thrust that one would use to hover near the event horizion of a black hole to accelerate to relativistic speeds. Relativistic time dilation would do the rest.
  9. Apr 4, 2017 #8
    Yes, that's what I was wondering about. And since the dt term in the Schwarzschild metric approaches zero as r approaches the event horizon, it would seem that — with sufficient technology — one could park oneself arbitrarily close to the event horizon and watch the rest of the universe fly by with any desired speed.
  10. Apr 4, 2017 #9
    Yeah, but you would have to accelerate very rapidly to keep yourself from falling in. If you had that kind of thruster, then it's probably safer to just fly back and forth in deep space at some speed near c.
  11. Apr 5, 2017 #10


    User Avatar
    Gold Member

    Means that hovering close the event horizon might create a pancake-like shape out of your body.
  12. Apr 5, 2017 #11

    PBS Spacetime did an episode of that a few days ago. The host is an astrophysicist so the science is usually good.

    Apparently, if you travelled towards the black hole, you'd see everything falling into it happen in reverse because you're encountering light that left in the past. If you try to push out of the black hole, you'll encounter light still coming into it so you'll see the events after you went in unfold.
  13. Apr 5, 2017 #12


    User Avatar
    Science Advisor

    Since you cannot exceed the speed of light locally, you are not going to catch up to light emitted in the past to see things happen in reverse.
    Since you cannot push out of the black hole, the part about what you would see if you did is not physically meaningful.
  14. Apr 5, 2017 #13


    User Avatar
    2016 Award

    Staff: Mentor

    Not if it said the things you say in the rest of your post. See below.

    This is not correct. The light that "left in the past" from events outside the hole will have fallen into the hole and reached the singularity before you do. You will never see it. Any light signals you see coming from outside the hole after you fall in will be from events that happened outside after you fell in.

    This is also true if you don't try to "push out" of the black hole. The only difference the "pushing out" (which I take to mean accelerating in a radially outward direction--which won't actually stop you from falling further and further in) makes is in the redshift/blueshift of the light you see coming in from events that happened after you fell in.
  15. Apr 5, 2017 #14


    User Avatar
    Staff Emeritus
    Science Advisor

    That's true. Perhaps the OP and the PBS special is thinking of viewing light from things that have fallen into the hole before the observer, for instance light being emitted from the falling object "outwards", away from the black hole, just as the falling object is at the event horizon. Then the observer falls into the black hole a little bit later, and sees the light from the previously falling object just as they pass through the event horizon.
  16. Apr 5, 2017 #15


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    I don't think that's what he said at all! On the first point, he was referring to light from the collapsing star that was emitted at the "outer" extreme (*) of the light cone, just "below" or "after" the event horizon. That worldline can be intersected by a particle falling into the black hole later.

    (*) Outside the event horizon this would be radially outwards, but inside the horizon it's still towards to singularity.

    On the second point, he indicated that your maximal proper time after the event horizon is achieved by just letting yourself fall and any attempt to struggle will shorten the proper time until the singularity.
  17. Apr 5, 2017 #16


    User Avatar
    Staff Emeritus
    Science Advisor

    Let's try to work out the formula for the amount of crush you'd experience if you attempted to hover over a Schwarzschild black hole to get some time dilation factor ##\gamma##.

    First we need the formula for the amount of crush, which is the proper acceleration. I believe the formula is:

    $$a = \frac{GM}{r^2\sqrt{1-\frac{r_s}{r}}}$$

    for instance https://en.wikipedia.org/wiki/Komar_mass which assumes that G=1, or https://www.quora.com/What-would-the-acceleration-due-to-gravity-be-on-the-surface-of-a-black-hole. I recall seeing this formula in Wald's book "General Relativity", but not which page I saw it on, if I had more time I'd look it up to verify my fallible memory.

    Gravitational time dilation is given by

    $$\gamma = \frac{1}{\sqrt{1-\frac{r_s}{r}}}$$

    Let r be some multiple ##\eta## of ##r_s##, so that ##r = \eta \, r_s##.

    Then we can write:

    $$a = \frac{GM}{\eta^2 r_s^2\sqrt{1-\frac{1}{\eta}}}$$


    $$\gamma = \frac{1}{\sqrt{1-\frac{1}{\eta}}}$$

    Making use of the defintion of ##r_s##

    $$r_s = \frac{2GM}{c^2}$$

    and solving for ##\eta## as a function of ##\gamma##

    $$\eta = \frac{\gamma^2}{\gamma^2 - 1}$$

    we can re-write the expression for a as:

    $$a =\frac{GM}{\eta^2 r_s^2\sqrt{1-\frac{1}{\eta}}} = \frac{GM\gamma}{\eta^2 r_s^2} = \frac{GM}{r_s} \frac{\gamma}{{\eta^2 r_s}}=\frac{c^2}{2} \frac{\gamma}{\eta^2\,r_s} = \frac{c^2}{2\,r_s} \gamma \left( \frac{\gamma^2-1}{\gamma^2} \right)^2 $$

    The term to focus on is ##c^2/2r_s##. For ##\gamma=2##, the term on the right side turns out to be 18/16, so it's close to 1. For higher values of ##\gamma##, the term becomes approximately equal to ##\gamma##.

    A large r_s makes ##c^2 / 2\,r_s## smaller, to minimze crush we want it as small ass possible. So we want a large black hole. Suppose we have a billion solar mass black hole. This is larger than the one at the center of our galaxy, which is about 4 million solar masses. The Scharzschild radius for one solar mass is about 1.5 km <<wiki link>>, so for our billion solar mass black hole, we'd have ##r_s## = 1.5 billion km = ##1.5\,10^{12}## meters.

    Plugging this in, we get ##\frac{c^2}{3\,10^{12} meters}## = 30,000 meters/second^2. Ouch. Assuming I didn't make any mistakes, something I'm not as good as avoiding as I used to be :(.

    This is why I say it's time for plan B when trying to get large time dilation factors. Hovering squishes you flat, trying to orbit the black hole runs into two problems. The first problem is that orbits don't exist inside the photon sphere, which is r=3m. One can get high time dilation due to velocity as one approaches the photon sphere, but one can get the same time dilation with high velocity outside the photon sphere. Furthermore, around a Schwarzschild black hole, the orbits at the photon sphere are unstable, so you'd need active correction to go this route. Not only does the gravity of the black hole not help much to achieve time dilation, it makes surviving the experience more difficult.

    An interesting and non-obvious take of this is from Kip Thorne, the science consultant for "Interstellar". Tasked with finding a stable orbit with a high time dilation, he envisioned a very rapdily rotating black hole at the center, an came up with a possible (though not very likely) scenario that had some basis in physics that would work for the movie. But this isn't a Schwarzschild black hole at all, it's an extremal Kerr black hole. I rather suspect that in Thorne's scenario, the gravity also turns out to be much less important than the velocity, but I haven't actually computed anything.
    Last edited: Apr 5, 2017
  18. Apr 5, 2017 #17


    User Avatar
    2016 Award

    Staff: Mentor

    Btw, a very counterintuitive property of what firing your rockets to accelerate does once you're inside a black hole's event horizon is illustrated by the following thought experiment: consider two observers, Alice and Bob, who fall into a black hole together--i.e., they are right next to each other, in free fall, as they cross the horizon. But just after they cross, Bob fires his rockets and accelerates radially outward. Bob sees Alice fall away below him, and Alice sees Bob rocket away above her, just as if they were both in a large region of empty, flat spacetime. And Alice will reach the singularity "before" Bob does, if we order events by light signals--in other words, Bob will be able to see light signals emitted by Alice all the way down to the singularity, but Alice will stop seeing light signals from Bob (because she hits the singularity) while Bob is still well away from the singularity. However, if we compare the elapsed times on Bob's and Alice's clocks, from the event where they separate (i.e., where Bob starts firing his rockets), until the events where they, respectively, hit the singularity, we will find that Bob's elapsed time to the singularity is less than that of Alice! In fact, we can make Bob's elapsed time as small as we like, in principle, by increasing the proper acceleration he feels due to his rockets.
  19. Apr 6, 2017 #18
    Yeah, as explained in the video, time and space kind of reverse roles within the event horizon. Instead of being stuck moving forward in time but being free to move in space, you're stuck moving in space toward the singularity, while having the freedom to kind of move forward and back in "time" (within the event horizon). Since all paths in space lead to the singularity in the black hole, any attempt to accelerate will only reduce the amount of proper time you experience before you reach it.
  20. Apr 6, 2017 #19


    User Avatar
    2016 Award

    Staff: Mentor

    Which is apparently wrong. The video is not a valid source if it is saying what you are saying.

    This is not correct. You are always stuck moving forward in time; you can't move backward in time. The reason you are forced to move toward the singularity inside the event horizon is that in that region, the singularity is in your future; its direction from you is a timelike direction, not a spacelike direction.

    Also, you can still move in all directions in space inside the event horizon.

    This is not correct. There are spacelike paths that start inside the hole and do not lead to the singularity. Some of them remain inside the hole; others lead outside the hole. There are no timelike or null paths from inside the hole to outside the hole.

    This is true, but the reason it's true is not what you claim. See above.
  21. Apr 6, 2017 #20
    I think that's the point. Time-like paths inside the event horizon are effectively unidirectional (they move only toward the singularity, there is no time-like path that moves you further from it) as opposed to allowing freedom to move toward or away from any particular location in space when outside the event horizon.

    But they all lead closer to the singularity at different rates, just like how outside the event horizon, while you can alter your "velocity" through time, you can only move forward in it.

    I'd actually be interested in seeing what you have to say after actually watching the video instead of responding to people's descriptions of it. We may be iterating the ideas presented within it imprecisely.
    Last edited: Apr 6, 2017
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted

Similar Discussions: What do I see while falling into a black hole?