David Corfield said:
There are some (three?) occasions where the Latex didn't compile. And some typos: ...
Thanks! Fixed now.
David Corfield said:
I wonder how much these constructions are arising through abstract general considerations.
Everything! For the present series I am downplaying the general abstract perspective, clearly, but everything I am saying here flows naturally out of differentially cohesive homotopy theory. The key point is that the variational bicomplex is locally equivalent to the de Rham complex. This means that as we start with ordinary differential cohomology in the base differentially cohesive infinity-topos and then send that to the topos of PDEs, there a "finer Poincare lemma" appears which allows to resolve the constant real coefficients by a chain complex adapted to the horizontal stratification. This way the variational Euler-differential appears all by itself as the curvature of those "Euler-Lagrange p-gerbes". Anyway, I should talk about this in more detail later.
David Corfield said:
And how much (presumably less) in the realm of arithmetic jet spaces?
One has to beware that the
arithmetic jet spaces of Buium do not capture the general concept of jets. I think the right way to put it is that for ##X## an arithmetic scheme, then Buium's arithmetic jet space is to be thought of as the jets of the bundle ## X times mathrm{Spec}(mathbb{Z}) to mathrm{Spec}(mathbb{Z}) ##. More generally one need jet bundles of more general arithmetic bundles.