I What does the output of a radio telescope look like?

AI Thread Summary
The output of a radio telescope is typically a plot of signal amplitude versus frequency, rather than a visual image like optical telescopes. Radio emissions are often illustrated using contour plots to represent signal magnitude. Observations are recorded over time, with the signal voltage digitized for later analysis, resembling a temperature reading from the antenna and receiver. Accurate radio images are synthesized by using multiple antennas to capture the same area of the sky, which are then synchronized and correlated to produce an image. For transient objects, either single or multiple telescopes can measure signal intensity variations, allowing for real-time audio representations of phenomena like pulsars.
accdd
Messages
95
Reaction score
20
What does the output of a radio telescope look like?
I suppose it is not an image like that of a telescope observing visible light
 
Astronomy news on Phys.org
Typically a plot of signal amplitude as a function of frequency. So a baseline with a peak, very similar to what a spectrum in any frequency domain looks like.

Often the images of a radio emitting region will be illustrated via contour lines depicting the signal magnitude. As an example from NRAO: Viewing a contour plot.
 
  • Like
  • Informative
Likes accdd, PeroK and berkeman
accdd said:
What does the output of a radio telescope look like?
The observation is recorded over a period of time.
The bandwidth of the signal is determined by the antenna and receiver selectivity.
The signal voltage is digitized, so it can be analyzed later using signal processing.
In effect, the antenna and receiver is a thermometer and the signal represents a temperature.
The signal sounds like frying white noise.
With an antenna aperture over about 500 m², the brightest pulsar can be heard in real time in the noise.

Accurate radio images are synthesized by recording the same area of sky, with many widely spaced antennas and receivers, simultaneously as the Earth rotates. The recorded signals are later synchronized, then correlated to produce the image.
https://en.wikipedia.org/wiki/Very-long-baseline_interferometry
 
  • Like
Likes accdd, Ibix and PeroK
Radio astronomical data comes in several forms. For observing spectral lines, for example the well-known hydrogen 21 cm line, the output of the telescope is processed in a spectrometer to produce a spectrum of the kind you have seen before, and can usually be obtained with a single radio dish.

For sensitive observations of the ‘continuum’ emission of radio galaxies, we would normally use many telescopes joined together to form an interferometer, or an array. The data from all of these individual telescopes is joined together in some complexicated electronics (technically called a correlator), where we see the ‘interference pattern’ of the sky image as viewed by the telescope signals when they are brought together. Technically the array of telescopes are measuring the Fourier transform of the sky image, where the instantaneous 'Fourier componebts' are the interactions between the signals of the various telescopes when they are joined together. Then with a simple bit of data processing (an inverse Fourier transform), and a few other tricks, we recover the sky distribution, which is what you see looking like a radio image of the sky.

For observations of transient objects, for example the Sun, or Jupiter, or pulsars, wither an array, or a single telescope can be used, that measures the signal intensity variations, in a similar way to the spectroscopic case above, but in this case [probably] with a broader receiving bandwidth. In the early days of pulsar discovery, this signal would often be fed directly into an audio amplifier, where you could hear the click-click-click of pulsars as they entered the field of view.
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Back
Top