Radio astronomical data comes in several forms. For observing spectral lines, for example the well-known hydrogen 21 cm line, the output of the telescope is processed in a spectrometer to produce a spectrum of the kind you have seen before, and can usually be obtained with a single radio dish.
For sensitive observations of the ‘continuum’ emission of radio galaxies, we would normally use many telescopes joined together to form an interferometer, or an array. The data from all of these individual telescopes is joined together in some complexicated electronics (technically called a correlator), where we see the ‘interference pattern’ of the sky image as viewed by the telescope signals when they are brought together. Technically the array of telescopes are measuring the Fourier transform of the sky image, where the instantaneous 'Fourier componebts' are the interactions between the signals of the various telescopes when they are joined together. Then with a simple bit of data processing (an inverse Fourier transform), and a few other tricks, we recover the sky distribution, which is what you see looking like a radio image of the sky.
For observations of transient objects, for example the Sun, or Jupiter, or pulsars, wither an array, or a single telescope can be used, that measures the signal intensity variations, in a similar way to the spectroscopic case above, but in this case [probably] with a broader receiving bandwidth. In the early days of pulsar discovery, this signal would often be fed directly into an audio amplifier, where you could hear the click-click-click of pulsars as they entered the field of view.