What exactly allows a differential relation form of an equation?

rexregisanimi
Messages
42
Reaction score
6
What exactly allows a "differential relation" form of an equation?

I understand this in a superficial way but I'd really like some more clarification. If anybody can provide a little better understanding on this subject, please feel free to post anything at all. Even a sentence or two would be helpful.

I am reading through the optics section of my Stellar Astrophysics book and I came across the following sentences:

Using the small-angle approximation, tan(θ) ≈ θ, for θ expressed in radians, we find

y = fθ.​

This immediately leads to the differential relation known as the plate scale, dθ/dy,

\frac{dθ}{dy} = \frac{1}{f}.​

What I don't completely understand is how and why one can simply go from the y=fθ form to the dθ/dy = 1/f form. I understand what the equation means but I don't understand the rules behind switching from one form to the other. Are there any or can I change any two variables to differential form to get a new relation? Any help or guidance at all would be appreciated.
 
Mathematics news on Phys.org


For f not a function of y or theta,

dy= fdθ

Then its just symbol pushing.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top