What Happens to the Wavelength of Light as it Passes Through Water?

AI Thread Summary
When light passes through water, its wavelength changes due to the different refractive index, while its frequency remains constant. Upon exiting the water into a vacuum, the wavelength will revert to its original value, not remaining at 380nm. This phenomenon contrasts with sound, which does not change frequency when transitioning between media. The key concept is that wave speed influences wavelength, but frequency remains unchanged at boundaries. Understanding this relationship is essential in physics education.
The Baron
Messages
23
Reaction score
0
I have a question, say a wave of light is emitted, and it passes through water, changing it's wave length to 380nm inside the water, once it comes out of the water, to vacuum will the wavelength remain at 380nm or will it change?
 
Physics news on Phys.org
The wavelength (and speed) changes as the light passes through various media. What remains the same is the frequency.
 
  • Like
Likes sophiecentaur
The Baron said:
once it comes out of the water, to vacuum will the wavelength remain at 380nm or will it change?
I think this must be one of the most frequently asked questions in Physics. Strange - but not so strange is that we all accept the fact that sound doesn't change frequency as it passes through different media. Where's the difference between the two ideas? Imo, it has to be because we started off (and still do, largely) by quantifying light in terms of its wavelength but we hear the frequency of sound.
The clever bit is about a change in wave speed affecting the wavelength and not the frequency is one step further on in our Physics education. Frequency is the fundamental quantity in waves because the vibrations have to be 'continuous' at an interface (the ups and downs cannot get out of step across a boundary). The wavelength is then tied to the frequency by the wave speed.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top