What is an easy way to solve this partial differential equation?

Telemachus
Messages
820
Reaction score
30
Hi there. I have this partial differential equation that I have to solve, and I thought that perhaps there was an easy way of solving this, like finding an equivalent differential for the right hand side of the equation, on such a way that I could get a simple differential equation, and then just integrating I could solve this.

The partial differential equation that I have to solve is this:

d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})

Is there an easy way for solving this? the idea I had was to merge both differentials on the right side in only one differential, but I couldn't find the way.
 
Physics news on Phys.org
Ok. I think I got it. This is what I have done:
d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})

So I took
d(A^{-1/2}u^{-3/4}v^{1/2})=A^{-1/2}(-\frac{3}{4}u^{-7/4}v^{1/2}du+\frac{1}{2}u^{-3/4}v^{-1/2}dv)
And in the other hand:
d(2A^{-1/2}u^{1/4}v^{-1/2})=A^{-1/2}(\frac{1}{2}u^{-7/4}v^{1/2}du+u^{1/4}v^{-3/2}dv)

Then
d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})=A^{-1/2}(-\frac{3}{4}u^{-7/4}v^{1/2}du+\frac{1}{2}u^{-3/4}v^{-1/2}dv+\frac{1}{2}u^{-7/4}v^{1/2}du+u^{1/4}v^{-3/2}dv)
d \left( \frac{\mu}{T} \right )=A^{-1/2}[ -\frac{1}{4}u^{-3/4}v^{1/2}du-\frac{1}{2}u^{1/4}v^{-1/2}dv]=-\frac{1}{4}[u^{-3/4}v^{1/2}du+2u^{1/4}v^{-1/2}dv]=-A^{-1/2}d(u^{1/4}v^{1/2})
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top