What is the relationship between work and potential energy?

AI Thread Summary
Work is defined as the integral of force over distance, while potential energy is the negative integral of force, leading to the relationship W = -ΔU. This indicates that work done by a conservative force results in a change in potential energy. The discussion highlights the confusion surrounding the definitions and relationships between work, potential energy, and kinetic energy, particularly in conservative systems. The equation W = -ΔU emphasizes the conservation of energy principle, where energy is transformed rather than lost. Understanding these concepts is crucial for grasping the dynamics of objects in force fields.
henpen
Messages
50
Reaction score
0
Physics news on Phys.org
Potential energy is stored energy. It is the energy that an object possesses due to its position in a force field or due to its configuration. Potential energy is the energy that an object possesses due to its position in a force field or due to its configuration.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...

Similar threads

Back
Top