xylai
- 58
- 0
In one paper (PRL 89, 144101 (2002)),
k=<Tr\sigma>_{p.v.}, (1)
where p.v. stipulates a principal-value evaluation and
<f>=^{def}lim_{t\rightarrow\infty}t^{-1}\int_{0}^{t}f(\bar{t})d\bar{t}.
\sigma_{n+1}=(\sigma_{n}^{-1}+T)^{-1}-\nabla\nabla f(q_{n+1}), (2)
then the author deduces the following equation:
k=lim_{N\rightarrow\infty}\sum_{n=0}^{N-1}ln|det(1+\sigma_{n}T)| (3).
Can you show me how to deduce the equation (3)?
Thank you!
k=<Tr\sigma>_{p.v.}, (1)
where p.v. stipulates a principal-value evaluation and
<f>=^{def}lim_{t\rightarrow\infty}t^{-1}\int_{0}^{t}f(\bar{t})d\bar{t}.
\sigma_{n+1}=(\sigma_{n}^{-1}+T)^{-1}-\nabla\nabla f(q_{n+1}), (2)
then the author deduces the following equation:
k=lim_{N\rightarrow\infty}\sum_{n=0}^{N-1}ln|det(1+\sigma_{n}T)| (3).
Can you show me how to deduce the equation (3)?
Thank you!
Last edited: