What is the Adjoint of a Linear Operator?

rsa58
Messages
83
Reaction score
0

Homework Statement


T is a linear operator on a finite dimensional vector space. then N(T*T)=N(T). the null space are equal.


Homework Equations





The Attempt at a Solution


this is my method, but its does not work if dim(R(T))=0. I'm only concerned with showing
N(T*T) \subseteq N(T). let x beong to N(T*T) then <T*T(x),y>=0=<T(x),T(y)> for all y in the vector space. thus, if dim(R(T)) > 0 then there exists y such that T(y) is not equal to zero so T(x)=0.

any other methods out there?
 
Physics news on Phys.org
okay i think i got it if dim(R(T))=0 then ofcourse x is in the null space of T.
 
But that's only true for the trivial case, the 0 matrix.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top