jdstokes
- 520
- 1
Find the cardinality and dimension of the vector space \mathbb{Z}^{3}_{7} over \mathbb{Z}_{7}.
\mathbb{Z}^{3}_{7} = \{ (a,b,c) \; | \; a,b,c \in \mathbb{Z}_{7} \}.
Then since \mathbb{Z}_{7} is a field 1 \cdot a = a \; \forall \; a, so B = \{ (1,0,0), (0,1,0) , (0,0,1) \} is a basis of \mathbb{Z}^{3}_{7}, so \dim \mathbb{Z}^{3}_{7} = 3. ans = 9, what the?
Thanks
James
\mathbb{Z}^{3}_{7} = \{ (a,b,c) \; | \; a,b,c \in \mathbb{Z}_{7} \}.
Then since \mathbb{Z}_{7} is a field 1 \cdot a = a \; \forall \; a, so B = \{ (1,0,0), (0,1,0) , (0,0,1) \} is a basis of \mathbb{Z}^{3}_{7}, so \dim \mathbb{Z}^{3}_{7} = 3. ans = 9, what the?
Thanks
James
Last edited: