superwolf
- 179
- 0
<br />
L(x_1,x_2,...,x_n;\theta)=\Pi _{i=1}^n (\frac{\theta}{2})^x (1-\frac{\theta}{2})^{1-x} = (\frac{\theta}{2})^{\Sigma^n_{i=1}x_i}(1-frac{\theta}{2})^{n-\Sigma^n_{i=1}x_i}<br />
Correct so far if f(x) = (\frac{\theta}{2})^x (1-\frac{\theta}{2})^{1-x}?
<br /> lnL(x_1,x_2,...,x_n;\theta) = \Sigma^n_{i=1} x_i ln(\frac{\theta}{2}) + (n-\Sigma_{i=1}x_i) ln(\frac{1}{2 - \theta})<br />
<br /> \frac{d lnL}{d \theta}(x_1,x_2,...,x_n;\theta) = Sigma^n_{i=1}x_i \cdot \frac{1}{\theta - }(n-\Sigma^n_{i=1}x_i) \frac{1}{2-\theta}<br />
Correct so far if f(x) = (\frac{\theta}{2})^x (1-\frac{\theta}{2})^{1-x}?
<br /> lnL(x_1,x_2,...,x_n;\theta) = \Sigma^n_{i=1} x_i ln(\frac{\theta}{2}) + (n-\Sigma_{i=1}x_i) ln(\frac{1}{2 - \theta})<br />
<br /> \frac{d lnL}{d \theta}(x_1,x_2,...,x_n;\theta) = Sigma^n_{i=1}x_i \cdot \frac{1}{\theta - }(n-\Sigma^n_{i=1}x_i) \frac{1}{2-\theta}<br />
Last edited: