What is the connection between 2-forms, determinants, and cross products in R^3?

  • Thread starter Thread starter JonnyMaddox
  • Start date Start date
  • Tags Tags
    Determinants Forms
JonnyMaddox
Messages
74
Reaction score
1
Hi, 2-forms are defined as

du^{j} \wedge du^{k}(v,w) = v^{j}w^{k}-v^{k}w^{j} = \begin{vmatrix} du^{j}(v) & du^{j}(w) \\ du^{k}(v) & du^{k}(w) \end{vmatrix}

But what if I have two concret 1-forms in R^{3} like (2dx-3dy+dz)\wedge (dx+2dy-dz) and then I calculte (2dx-3dy+dz)\wedge (dx+2dy-dz)=-7dy \wedge dx +3dz \wedge dx - dy \wedge dz= 7 dx \wedge dy + 3 dz \wedge dx + dy \wedge dz (now a 2-form)
I know this is the same as the cross product between (2,-3,1)^{T} and (1,2,-1)^{T}
What has this to do with the determinant? If I calculate this for 1-forms in R^{2} like (2dx+4dx)\wedge (3dx+9dy) = -18 dx\wedge dy +12 dx \wedge dy = 6 dx \wedge dy which equals the determinant of the vectors (2,4) and (3,9). But this is not like 1-forms in R^{3}. And is the geometric interpretation right that 7 dx \wedge dy + 3 dz \wedge dx + dy \wedge dz means that 7 is the part of the area projected to the xy axis, 3 the part projecte to the zx axis and 1 the part projected onto the yz axis? Or is it a different coordinate system like dxdy, dzdx and dydz ?
Now actually these are all functions of vectors like v or w as in the definition of 2-forms. What happens if they come into this picture?
 
Physics news on Phys.org
I'm sorry you are not finding help at the moment. Is there any additional information you can share with us?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top