MHB What is the Correct Value of n in this Given Ratio?

  • Thread starter Thread starter Albert1
  • Start date Start date
Albert1
Messages
1,221
Reaction score
0
$n=\dfrac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)}$

$find\,\,\, n$
 
Mathematics news on Phys.org
Albert said:
$n=\dfrac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)}$

$find\,\,\, n$

we have $x^4+ 324 = (x^2)^2 + 18^2 = (x^2+18)^2 - 36x^2 = (x^2 + 6x + 18)(x^2-6x+18$
using this we get
$10^4 + 324 = (10 * 16 + 18)(10 * 4 + 18)$
$22^4 + 324 = (22 * 28 + 18)(22 * 16 + 18)$
$34^4 + 324 = (34 * 40 + 18)(34 * 28 + 18)$
$46^4 + 324 = (46 * 52 + 18)(46 * 40 + 18)$
so numerator $= (10^4+324)(22^4+324)(34^4+324)(46^4+324)$
$= ( 4 * 10 + 18)(10 * 16 + 18) (16 * 22 + 18) ( 22 * 28 + 18)(28 * 34 + 18) (34 * 40 + 18) (40 * 46 + 18) (46 * 52 + 18)$
now for denominator
$4^4 + 324 = (4 * 10 + 18)( 4 * (-2) + 18)$
$16^4 + 324 = (16 * 22 + 18)( 16 * 10 + 18)$
$28^4 + 324 = (28 * 34 + 18)(28 * 22 + 18)$
$40^4 + 324 = (40 * 46 + 18)(40 * 34 + 18)$
so denominator $= (4^4+324)(16+324)(28+324)(40+324)$
$= ( 4 * (-2) + 18)(4 * 10 +18) (10 * 16 + 18) ( 16 * 22 + 18)(22 * 28 + 18) (28 * 34 + 18) (34 * 40 + 18) (40 *46 + 18)$
so ratio = $\frac{46* 52 +18}{4 * (-2) + 18} = 240$
or n = 240
 
kaliprasad said:
we have $x^4+ 324 = (x^2)^2 + 18^2 = (x^2+18)^2 - 36x^2 = (x^2 + 6x + 18)(x^2-6x+18$
using this we get
$10^4 + 324 = (10 * 16 + 18)(10 * 4 + 18)$
$22^4 + 324 = (22 * 28 + 18)(22 * 16 + 18)$
$34^4 + 324 = (34 * 40 + 18)(34 * 28 + 18)$
$46^4 + 324 = (46 * 52 + 18)(46 * 40 + 18)$
so numerator $= (10^4+324)(22^4+324)(34^4+324)(46^4+324)$
$= ( 4 * 10 + 18)(10 * 16 + 18) (16 * 22 + 18) ( 22 * 28 + 18)(28 * 34 + 18) (34 * 40 + 18) (40 * 46 + 18) (46 * 52 + 18)$
now for denominator
$4^4 + 324 = (4 * 10 + 18)( 4 * (-2) + 18)$
$16^4 + 324 = (16 * 22 + 18)( 16 * 10 + 18)$
$28^4 + 324 = (28 * 34 + 18)(28 * 22 + 18)$
$40^4 + 324 = (40 * 46 + 18)(40 * 34 + 18)$
so denominator $= (4^4+324)(16+324)(28+324)(40+324)$
$= ( 4 * (-2) + 18)(4 * 10 +18) (10 * 16 + 18) ( 16 * 22 + 18)(22 * 28 + 18) (28 * 34 + 18) (34 * 40 + 18) (40 *46 + 18)$
so ratio = $\frac{46* 52 +18}{4 * (-2) + 18} = 240$
or n = 240
check your answer
 
Albert said:
check your answer

mistake in last step
2410/10 or 241
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
12
Views
3K
Replies
2
Views
4K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
13
Views
2K
Back
Top