What is the correct way to solve a matrix equation with variables x and y?

  • Thread starter Thread starter Ry122
  • Start date Start date
  • Tags Tags
    Matrix
Ry122
Messages
563
Reaction score
2
Can someone tell me what I'm doing wrong. the answer for x is supposed to be -3/7 and y is supposed to be 5/7 but i have 5/7 and -23/7.

\begin{bmatrix}<br /> 1 &amp; -2 \\ <br /> 3 &amp; 1<br /> \end{bmatrix} <br /> \begin{bmatrix}<br /> 1 &amp; 0 \\ <br /> 0 &amp; 1<br /> \end{bmatrix} <br /> <br /> <br /> <br />
new r1= r1-(r2 x -2)
\begin{bmatrix}<br /> 7 &amp; 0 \\ <br /> 3 &amp; 1<br /> \end{bmatrix} <br /> \begin{bmatrix}<br /> 1 &amp; -2 \\ <br /> 0 &amp; 1<br /> \end{bmatrix} <br /> <br /> <br /> <br />
new r1=r1/7
\begin{bmatrix}<br /> 1 &amp; 0 \\ <br /> 3 &amp; 1<br /> \end{bmatrix} <br /> \begin{bmatrix}<br /> 1/7 &amp; -2/7 \\ <br /> 0 &amp; 1<br /> \end{bmatrix} <br /> <br /> <br /> <br />
new r2 = r2-(r1 x 3)
\begin{bmatrix}<br /> 1 &amp; 0 \\ <br /> 0 &amp; 1<br /> \end{bmatrix} <br /> \begin{bmatrix}<br /> 1/7 &amp; -2/7 \\ <br /> -3/7 &amp; 13/7<br /> \end{bmatrix} <br /> <br /> <br /> <br />

<br /> <br /> b=\begin{bmatrix}<br /> 1 \\ <br /> -2<br /> \end{bmatrix} <br />
so
<br /> <br /> \begin{bmatrix}<br /> 1/7 &amp; -2/7 \\ <br /> -3/7 &amp; 13/7<br /> \end{bmatrix} <br /> \begin{bmatrix}<br /> 1 \\ <br /> -2<br /> \end{bmatrix} <br /> <br /> <br /> <br />

<br /> 4/7 + 1/7 = 5/7<br />
<br /> -26/7 + 3/7 = -23/7<br />
 
Last edited:
Physics news on Phys.org
Are you sure y is supposed to be 5/7? I got -5/7. As for your error, check your first step. The matrix on the left hand side should be 1,2 not 1,-2.
 
yes its negative 5/7 actually.
 
It would help if you would tell us right at the beginning what the problem is!
I can guess, as Defennnder apparently did, that you are trying to solve
\begin{bmatrix}1 &amp; -2 \\3 &amp; 1\end{bmatrix}\begin{bmatrix} x \\ y\end{bmatrix}= \begin{bmatrix}1 \\ -2\end{bmatrix}
and that you found the inverse matrix then mutliplied the inverse by b.

Ry122 said:
Can someone tell me what I'm doing wrong. the answer for x is supposed to be -3/7 and y is supposed to be 5/7 but i have 5/7 and -23/7.

<br /> <br /> <br /> \begin{bmatrix}<br /> 1 &amp; -2 \\ <br /> 3 &amp; 1<br /> \end{bmatrix} <br /> \begin{bmatrix}<br /> 1 &amp; 0 \\ <br /> 0 &amp; 1<br /> \end{bmatrix} <br /> <br /> <br /> <br />
new r1= r1-(r2 x -2)
<br /> <br /> <br /> \begin{bmatrix}<br /> 7 &amp; 0 \\ <br /> 3 &amp; 1<br /> \end{bmatrix} <br /> \begin{bmatrix}<br /> 1 &amp; -2 \\ <br /> 0 &amp; 1<br /> \end{bmatrix}
Here's your error. In the last column "r1- (r2*-2)" would be 0- (1(-2))= 2, not -2. it would have been simpler to think "r1= r1+ (r2*2)" rather than having the two negatives.




new r1=r1/7
<br /> <br /> <br /> \begin{bmatrix}<br /> 1 &amp; 0 \\ <br /> 3 &amp; 1<br /> \end{bmatrix} <br /> \begin{bmatrix}<br /> 1/7 &amp; -2/7 \\ <br /> 0 &amp; 1<br /> \end{bmatrix} <br /> <br /> <br /> <br />
new r2 = r2-(r1 x 3)
<br /> <br /> <br /> \begin{bmatrix}<br /> 1 &amp; 0 \\ <br /> 0 &amp; 1<br /> \end{bmatrix} <br /> \begin{bmatrix}<br /> 1/7 &amp; -2/7 \\ <br /> -3/7 &amp; 13/7<br /> \end{bmatrix} <br /> <br /> <br /> <br />

<br /> <br /> b=\begin{bmatrix}<br /> 1 \\ <br /> -2<br /> \end{bmatrix} <br />
so
<br /> <br /> \begin{bmatrix}<br /> 1/7 &amp; -2/7 \\ <br /> -3/7 &amp; 13/7<br /> \end{bmatrix} <br /> \begin{bmatrix}<br /> 1 \\ <br /> -2<br /> \end{bmatrix} <br /> <br /> <br /> <br />

<br /> 4/7 + 1/7 = 5/7<br />
<br /> -26/7 + 3/7 = -23/7<br />
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top