What is the Cost Function for a Long Distance Call?

  • Thread starter Thread starter gr3gg0r
  • Start date Start date
  • Tags Tags
    Integer
AI Thread Summary
The cost function for a long-distance call is defined as C(t) = 1.04 for 0 < t ≤ 2, and for t > 2, it varies based on whether t is an integer or not. For non-integer t, the function is C(t) = 1.04 + 0.36 * greatest integer of (t - 1), while for integer t, it is C(t) = 1.04 + 0.36(t - 2). The distinction arises from the greatest integer function, which provides the largest integer less than or equal to a given number. Understanding this function is crucial for accurately calculating costs based on call duration. The discussion clarifies the need for separate cases in the cost function based on whether the call duration is an integer or not.
gr3gg0r
Messages
8
Reaction score
0
I just completed Trigonometry and College Algebra, and I'm heading into Calculus, so i thought i would get a head start on the material. So right now I'm working out of an old calculus book i got at the library. Then i came across this problem:

A dial-direct long distance call between two cities costs $1.04 for the first 2 minutes and $0.36 for each additional minute or fraction thereof.
a.) Use the greatest integer function to write the cost C of a call in terms of the time t (in minutes). Graph the cost function and discuss its continuity.
b.) Find the cost of a 9-minute call.

I didn't think this would be so hard, so i worked at it a little bit, the only part i had trouble with was coming up with the correct function, graphing and solving for 9 minutes is easy after that. I got:
C(t) = 1.04, 0 < t <= 2
1.04 + 0.36 * greatest integer of (t - 2 ), t > 2

So i doulble checked in the back of the book and it says the answer is:
C(t) = 1.04, 0 < t <= 2
1.04 + 0.36 * greatest integer of (t - 1), t > 2, t is not an integer
1.04 + 0.36(t - 2), t > 2, t is an integer

i don't understand why there needs to be to separate functions for it being an integer or not. I thought with greatest integer, if the number is already an integer, it would leave it alone, and also, why only t - 1 in the second one, shouldn't it be t - 2?

Anyways, i hope someone will help me out. Thanks!
 
Physics news on Phys.org
gr3gg0r said:
I just completed Trigonometry and College Algebra, and I'm heading into Calculus, so i thought i would get a head start on the material. So right now I'm working out of an old calculus book i got at the library. Then i came across this problem:

A dial-direct long distance call between two cities costs $1.04 for the first 2 minutes and $0.36 for each additional minute or fraction thereof.
a.) Use the greatest integer function to write the cost C of a call in terms of the time t (in minutes). Graph the cost function and discuss its continuity.
b.) Find the cost of a 9-minute call.

I didn't think this would be so hard, so i worked at it a little bit, the only part i had trouble with was coming up with the correct function, graphing and solving for 9 minutes is easy after that. I got:
C(t) = 1.04, 0 < t <= 2
1.04 + 0.36 * greatest integer of (t - 2 ), t > 2

So i doulble checked in the back of the book and it says the answer is:
C(t) = 1.04, 0 < t <= 2
1.04 + 0.36 * greatest integer of (t - 1), t > 2, t is not an integer
1.04 + 0.36(t - 2), t > 2, t is an integer

i don't understand why there needs to be to separate functions for it being an integer or not. I thought with greatest integer, if the number is already an integer, it would leave it alone, and also, why only t - 1 in the second one, shouldn't it be t - 2?

Anyways, i hope someone will help me out. Thanks!

Your book is right. You need two functions because you have two sets of parameters.

The first function is (t-1) because of the greatest integer function. Take a call of 5.1 minutes for example. It should be equivalent to a 6 minute call which is 2.48 dollars. Now (5.1-1) = 4.1. The greatest integer of 4.1 is 4. So you have the final function of 1.04 + (.36*4) = 2.48.
 
gr3gg0r said:
i don't understand why there needs to be to separate functions for it being an integer or not. I thought with greatest integer, if the number is already an integer, it would leave it alone, and also, why only t - 1 in the second one, shouldn't it be t - 2?

Because the greatest integer function is the greatest integer less than or equal to the number. What you want is the least integer function (which apparently isn't readily available to you).

The other issue (the need for a special function for the t is an integer case) has to do with how the 'greatest integer' function is defined. Does it produce the greatest integer less than a number, or does it produce the greatest integer less than or equal to a number? Depending on how it's set up, you will need a special case for some problems.
 
So basically my answer reformatted :biggrin:
 
thanks guys, i think i understand it now, i was making the mistake that 5.1 mins needed to be charged as 6 mins instead of 5 mins. Thanks again!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top