What Is the Cubic Polynomial f(x) When 16a + 24b = 9?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Roots
Click For Summary

Discussion Overview

The discussion revolves around finding a cubic polynomial \( f(x) = x^3 - \frac{3}{2}x^2 + ax + b \) under the condition that its real roots lie within the interval \( (0, 1) \). Participants are tasked with proving that \( 16a + 24b \leq 9 \) and identifying the polynomial when equality holds.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • Some participants propose that the cubic polynomial must satisfy certain conditions regarding its roots and coefficients.
  • Others argue that the inequality \( 16a + 24b \leq 9 \) is essential for the roots to remain in the specified interval.
  • A later reply suggests that alternative methods may exist to approach the problem, inviting further exploration.
  • Multiple participants reiterate the polynomial form and conditions without introducing new perspectives or solutions.

Areas of Agreement / Disagreement

Participants generally agree on the form of the cubic polynomial and the condition regarding the roots. However, the methods to prove the inequality and find the polynomial under equality remain contested, with no consensus on a single approach.

Contextual Notes

The discussion does not resolve the mathematical steps required to prove the inequality or find the polynomial, leaving assumptions and dependencies on definitions unaddressed.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let the function of $f$ be a cubic polynomial such that $f(x)=x^3-\frac{3}{2}x^2+ax+b=0$, with real roots lie in the interval $(0,\,1)$.

Prove that $16a+24b\le 9$. Find the corresponding function of $f$ when the equality holds.
 
Mathematics news on Phys.org
anemone said:
Let the function of $f$ be a cubic polynomial such that $f(x)=x^3-\frac{3}{2}x^2+ax+b=0$, with real roots lie in the interval $(0,\,1)$.

Prove that $16a+24b\le 9$. Find the corresponding function of $f$ when the equality holds.

For ease of notation I will use $A$ as $a$ and $B$ as $b$.

$$(x-a)(x-b)(x-c)=x^3-(a+b+c)x^2+(ab+ac+bc)x-abc$$
$$\Rightarrow A=ab+ac+bc,B=-abc,a+b+c=\dfrac32$$

$$(a+b+c)^2=a^2+b^2+c^2+2A=\dfrac94\Rightarrow a^2+b^2+c^2=\dfrac94-2A\quad(1)$$

$$(a-b)^2\ge0$$

$$a^2+b^2\ge2ab$$

Similarily,

$$a^2+c^2\ge2ac$$

$$b^2+c^2\ge2bc$$

Adding and simplifying gives

$$a^2+b^2+c^2\ge A$$

From $(1)$:

$$\dfrac94-2A\ge A$$

$$\dfrac34\ge A\quad(3)$$

From the AM-GM inequality:

$$\dfrac{a+b+c}{3}\ge\sqrt[3]{abc}\Rightarrow-\dfrac18\le B\quad(4)$$

From $(3)$ and $(4)$

$$12\ge16A$$

$$3\ge-24B$$

$\Rightarrow9\ge16A+24B$ with equality when $a=b=c=\dfrac12$.

The corresponding function for $f$ is $f(x)=\left(x-\dfrac12\right)^3$.
 
Last edited:
greg1313 said:
For ease of notation I will use $A$ as $a$ and $B$ as $b$.

$$(x-a)(x-b)(x-c)=x^3-\dfrac32x^2+(ab+ac+bc)x-abc$$
$$\Rightarrow A=ab+ac+bc,B=-abc$$

$$(a+b+c)^2=a^2+b^2+c^2+2A=\dfrac94\Rightarrow a^2+b^2+c^2=\dfrac94-2A\quad(1)$$

$$(a-b)^2\ge0$$

$$a^2+b^2\ge2ab$$

Similarily,

$$a^2+c^2\ge2ac$$

$$b^2+c^2\ge2bc$$

Adding and simplifying gives

$$a^2+b^2+c^2\ge A$$

From $(1)$:

$$\dfrac94-2A\ge A$$

$$\dfrac34\ge A\quad(3)$$

From the AM-GM inequality:

$$\dfrac{a+b+c}{3}\ge\sqrt[3]{abc}\Rightarrow-\dfrac18\le B\quad(4)$$

From $(3)$ and $(4)$

$$12\ge16A$$

$$3\ge-24B$$

$\Rightarrow9\ge16A+24B$ with equality when $a=b=c=\dfrac12$.

The corresponding function for $f$ is $f(x)=\left(x-\dfrac12\right)^3$.

Awesome, greg1313! And thanks for participating!(Cool)

This problem can still be solved using another route, and I welcome those who are interested to take a stab at it!
 
Hint:

Schur's inequality.
 
anemone said:
Let the function of $f$ be a cubic polynomial such that $f(x)=x^3-\frac{3}{2}x^2+ax+b=0$, with real roots lie in the interval $(0,\,1)$.

Prove that $16a+24b\le 9$. Find the corresponding function of $f$ when the equality holds.

Solution of other:

Let the three roots be $p,\,q$ and $r$. By Schur's inequality, we have:

$(p+q+r)^3+9pqr\ge 4(p+q+r)(pq+qr+rp)$

which is just

$\left(\dfrac{3}{2}\right)^3+9(-b)\ge 4\left(\dfrac{3}{2}\right)\left(a\right)$

and upon simplification we get:

$16a+24b\le 9$

Equality holds when $p=q=r$, i.e. $f(x)=\left(x-\dfrac{1}{2}\right)^3$.
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
9
Views
3K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K