What is the Definition of C1-Close Curve in Whitney Topology?

  • Thread starter Thread starter Ad123q
  • Start date Start date
  • Tags Tags
    Definition
Ad123q
Messages
19
Reaction score
0
I'm reading a paper and have came across the term 'Cn-close' in the sense of a curve being C1-close to a circle for example, but can't find a definition of this term anywhere, and would be grateful if anyone could help.
 
Physics news on Phys.org
This is a reference to the C^n topology, or Whitney topology: http://en.wikipedia.org/wiki/Whitney_topologies

In your case, to say that " As soon as two curves c1, c2: [0,1] --> R² are C^1-close together, then "blahblah"" means that there exists epsilon >0 such that whenever |c1(t) - c2(t)| < epsilon and |dc1/dt - dc1/dt| < epsilon for all t, then "blah blah" holds.

A reference is Differential Topology by M Hirsch.
 
Back
Top