What is the difference between gauge potential and gauge connection?

AI Thread Summary
A gauge connection is a Lie algebra-valued 1-form that maps fundamental vector fields to their generators and transforms under the gauge group's right-actions. In contrast, a gauge potential is derived by pulling back the gauge connection to the base space via a local section, representing a local choice of gauge. While both concepts are closely related, they serve different purposes in theoretical physics and mathematics. The gauge potential allows for the extension of partial derivatives to covariant derivatives, incorporating gauge transformations. Ultimately, they are distinct yet interconnected concepts within the framework of gauge theory.
binbagsss
Messages
1,291
Reaction score
12
and when are they the same thing?
In quite simple terms.Many thanks
 
Physics news on Phys.org
I would say a "gauge connection" is simply a connection on a principal fiber bundle, i.e. a Lie algebra-valued 1-form ##\omega## that maps fundamental vector fields to their generators, and transforms as ##R^\star_g\omega = ad(g^{-1})\omega## under the right-actions of the structure group (the "gauge group" in physicist's terminology). (But I'm not sure I heard the term "gauge connection" before, so maybe something else is meant?) A gauge potential is what you get if you pull ##\omega## back to the base space via a local section. In other words a gauge potential is defined on spacetime with respect to a local "choice of gauge". So, both are closely related, but different concepts.

Unfortunately it is difficult to explain all this without introducing a lot of jargon first. A book I like, that explains all this in quite simple terms is David Bleecker, "Gauge Theory and Variational Principles".
 
  • Like
Likes dextercioby
I think it's the same thing. It's just discussed in different language by theoretical and mathematical physicists. For a physicist the gauge potential is introduced to extend a partial derivative to a derivative covariant under gauge transformations, and this leads him to introduce a gauge potential in the derivative,
$$\partial_{\mu} \rightarrow \partial_{\mu} + \mathrm{i} g \mathcal{A}_{\mu},$$
where ##\mathcal{A}_{\mu}## is a Lie-algebra valued vector field.

From the mathematical point of view this introduces an affine connection on the fiber bundle with the ##\mathcal{A}_{\mu}## the connection coefficients (like the Christoffel symbols in affine differentiable manifolds in differential geometry).
 
I believe what mathematicians call a "connection on a principal bundle" is the object ##\omega## I defined above, which lives on the total space of the bundle. Physicists usually only discuss the pull-back ##\sigma^\star\omega ## to the base space (##\sigma## a local section), which in your notation would be ##\sigma^\star\omega = \mathcal{A}_\mu \mathrm{d}x^\mu##, and which posesses the characteristic transformation law of a gauge potential

$$\mathcal{A}'_\mu \mapsto g(\mathcal{A}_\mu + \partial_\mu)g^{-1}$$

under "changes of gauge" ##\sigma(x) \mapsto \sigma(x)g(x)##.

Those are not exactly the same, but really very closely related.
 
  • Like
Likes vanhees71
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top