What is the difference between the two sine rules for resultant vector?

eben
Messages
3
Reaction score
6
Hello can anyone help me with this:

there are two sine rules for finding the direction of a resultant vector;one for the sides and one for the angle;

I tested both formulas and they all worked well and gave me equal answers, does that mean I can use them interchangeably,the rules are:
a/sinA = b/sinB=c/sinC(for finding the sides) and

sinA/a=sinB/b=sinC/c(for finding the angles)
 
Mathematics news on Phys.org
There is only one rule. The second one you wrote is just what you get when you take the reciprocals of all the items. Naturally if a=b and neither a nor b is zero then it will also be true that 1/a = 1/b. Whenever you perform the same operation on both sides of the equation, the equality still holds, as long as the operation hasn't produced an error (eg divide by zero)
So yes, you can use either of the two versions that you wrote above.
 
  • Like
Likes Gavran and PeroK
thanks very much,God bless you.
 
One way to prove its true:

##x=y## with neither x nor y equal to 0

mpy both sides by ##1/x##: . . . . . . . . ##1 = y/x##

mpy both sides by ##1/y##: . . . . . . . . ##1/y = 1/x##

Hence: ## 1/x = 1/y##
 
There are four rules and they are the law of sines, the law of cosines, the law of tangents and the law of cotangents. The law of sines and the law of cosines are more common than the law of tangents and the law of cotangents.

The law of sines and the law of cosines can be used for finding a resultant vector or more commonly for finding lengths and angles in scalene triangles and there is a difference between the law of sines and the law of cosines.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top