What Is the Electric Potential Inside an Insulated Metal Cube?

jerro
Messages
7
Reaction score
0

Homework Statement




A metal box has 6 walls, all insulated from one another. The left and right wall are held at V= V0, which are at y=-d and y=d. All the other walls are grounded.

The cube has dimensions where walls run from x=0 to x=2d, z=0 to z=2d, and y=-d to y=d.

Homework Equations



Seperation of variables in 3D:
\frac{1}{X}\frac{\partial^{2} V}{\partial X} + \frac{1}{Y}\frac{\partial^{2} V}{\partial Y} + \frac{1}{Z}\frac{\partial^{2} V}{\partial Z} =0

Boundary conditions:
V(x,0) = 0
V(x,2d) = 0
V(y, -d) = V0
V(y,d) = V0
V(z,0) = 0
V(z,2d) = 0

The Attempt at a Solution



I am thinking that there is symmetry around z, so we can only worry about x and y.

V(x,y) = (Asinh(kx) + Bcosh(kx))(Ce^{ky} + De^{-ky})
which simplifies to (2cosh(ky)(Asinh(kx) + Bcosh(kx)).

Assuming all the above is correct, I am having issues at this point. I need to put this into a sum, which according to Griffiths should look something like

\sum Cn cosh( npiy/a)sin(npix/a) = V0.

I don't understand how to simplify this. I have limits of integration, but I am not sure where an integral can arise from this.

Thank you.
 
Physics news on Phys.org
Seems more natural to me to have all three coordinates run from -d to +d.
I am thinking that there is symmetry around z, so we can only worry about x and y.
Yes, there are symmetries, but I don't see this allows you to write the potential as a function of only two coordinates. It should be an even function wrt x, y and z, and there should be a symmetry between x and z.
 
Ok, that makes sense. So, with all three coordinates, the expression should be:

∑ Cn cosh( npiy/a)sin(npix/a)sin(npiz) = V0.

But what's next?
 
Just noticed this was wrong in the OP:
jerro said:
\frac{1}{X}\frac{\partial^{2} V}{\partial X} + \frac{1}{Y}\frac{\partial^{2} V}{\partial Y} + \frac{1}{Z}\frac{\partial^{2} V}{\partial Z} =0
You mean (1)## \frac{\partial^2 V}{\partial X^2}+\frac{\partial^2 V}{\partial Y^2}+\frac{\partial^2 V}{\partial Z^2} =0##and by separation of variables to V=F(x)G(y)H(z):
(2) ##\frac1F\frac{\partial^2 F}{\partial X^2}=a_n, \frac1G\frac{\partial^2 G}{\partial Y^2}=b_n, \frac1H\frac{\partial^2 H}{\partial Z^2} =c_n## where ##a_n+b_n+c_n=0##.
jerro said:
∑ Cn cosh( npiy/a)sin(npix/a)sin(npiz) = V0.
Surely that should be something like V(x,y,z) = ∑ Cn cosh( nπy/d)sin(nπx/d)sin(nπz/d). V0 applies whenever |y|=d:
∑ Cn cosh( npiy/a)sin(npix/a)sin(npiz) = V0.
Even then, doesn't seem to me that it satisfies (1). Maybe need a √2 factor inside the cosh?
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top