JArnold
- 21
- 3
The equation for cosmological redshift where z << 1 is is commonly given as z = λobs / λemit -1
What is the equation for high-z, accounting for how light surpasses the spatial expansion it leaves behind, but abstracting from gravitational influences? I'm particularly interested in how CMB can be calculated to have a z of only ~1100 if it dates from 380,000 years from the start of cosmological expansion, which would indicate a z of 13,750,000,000 / 380,000 -1, or more than 36,000.
What is the equation for high-z, accounting for how light surpasses the spatial expansion it leaves behind, but abstracting from gravitational influences? I'm particularly interested in how CMB can be calculated to have a z of only ~1100 if it dates from 380,000 years from the start of cosmological expansion, which would indicate a z of 13,750,000,000 / 380,000 -1, or more than 36,000.