What is the equation of motion for a Nonlinear Vertical Spring at equilibrium?

Raging Dragon
Messages
5
Reaction score
0
Solved the problem.
 
Last edited:
Physics news on Phys.org
Where do you get that the restoring force is proportional to z³? There is nothing in the problem statement to suggest that the spring is anything but a linear (force proportional to z) spring.
 
If the force IS given in the question as proportional to z^3, then you can find d by conservation of energy.

The equation of motion for the nonlinear spring is then a form of the Duffing equation, which has been (and still is being) studied in great detail - but AFAIK there is no analytic expression for the period. That suggests to me there is something wrong with the question, or your understanding of it.
 
Problem solved, don't need anymore help.
 
Last edited:
You can find "d" by energy conservation:
The potential energy associated to gravity has wholly been converted into spring potential energy at the extremum d.
 
At the equlibrium position, the spring is streched a distance b and the tension is mg, so kb^3 = mg.

If we let the PE = 0 at z = 0, the initial energy of the system (KE + PE) = 0.

At displacement z (positive upwards) the PE (gravity + spring) is mgz + kz^4/4

At the extremes of the oscillation the velocity is 0, so the KE = 0, and KE + PE = 0 (conservation of energy from the starting condition), so the PE = 0.

So at the extremes mgd + kd^4/4.
Sp d = 0 (duh - we knew that already) or d^3 = -4mg/k = -4b^3.

You can write down the equation of motion as total energy = constant, i.e. 1/2 m(z-dot)^2 = -mgz + kz^4/4. But how you solve that to get the period, I dunno. Maybe you can express the solution as an an elliptic function or something since there's something that looks like sqrt(a + bz^3) in there. I don't know if that's a sensible suggestion or not.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top