What Is the Final Temperature After Dropping Hot Coins into Cooler Water?

  • Thread starter Thread starter jcwhitts
  • Start date Start date
  • Tags Tags
    Thermodynamics
AI Thread Summary
The discussion focuses on a physics problem involving the final temperature of coins after being dropped into cooler water. The student calculates the heat transfer using the formula Q=mc(deltaT) for both the coins and the water, noting that the heat lost by the coins equals the heat gained by the water in an insulated system. There is confusion regarding whether to use the same variable for final temperature in both equations, with suggestions to clarify this to avoid errors. The importance of correctly accounting for heat loss and gain, including sign changes, is emphasized to solve for the final temperature. Ultimately, the final temperature will be lower than 100 degrees Celsius due to heat transfer dynamics.
jcwhitts
Messages
9
Reaction score
0

Homework Statement



In a physics lab experiment a student immersed 191 one-cent coins (each having a mass of 3.00 g) in boiling water, at a temperature of 100 degrees C. After they reached thermal equilibrium, she fished them out and dropped them into an amount of water of mass 0.275 kg at a temperature of 17.0 degrees C in an insulated container of negligible mass.

What was the final temperature of the coins? (One-cent coins are made of a metal alloy - mostly zinc - with a specific heat capacity of 390 J/(kg * K).)

Use 4190 J/(kg* K) for the heat capacity of the water.

Homework Equations



Q=mc(deltaT)

Q1 + Q2=0



The Attempt at a Solution



I'm not sure where you can get a workable system of equations from this problem. I tried finding the Q of the coins, which I found to be Q=(191*.003kg)(390)(T-100) where T=the final temperature of the coins. And the Q of Water: Q=(.275)(4190)(T-17).

You also know that the Q of water and the Q of the coins must be equal to 0 because they are in an insulated container.

Because the water is heated and the coins are cooled, you know that the Q for water is positive and that Qwater=Qcoins, However, they have different final temperatures and I'm not sure how to find one in terms of the other so I can solve the equation I've come up with. Please help!
 
Physics news on Phys.org
I don't know if you did it on purpose or by accident, but you used the same letter T in both equations. Is it really the same? If not, use a different letter. But if you can argue they are, you can set Qwater = Qcoins which gives you: 191*0.003*390*(T - 100) = 0.275*4190*(T - 100) and solve for T (one equation, one unknown).
 
You can't assume the final temperatures are the same, sorry. So Qcoins=Qwater but
(191*.003)(390)(R-100)=.275(4190)(T-17)
 
I guess you can assume the final temperatures are equal. I think it was a problem with my signs in that I overcompensated for the fact that the coins lose heat, so they have a negative value for Q. The final temperature will obviously be less than 100 so I suppose that accounts for the sign change.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top